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Several schemes for introducing an artificial dissipation into a central difference
approximation to the Euler and Navier–Stokes equations are considered. The focus
of the paper is on the convective upwind and split pressure (CUSP) scheme, which is
designed to support single interior point discrete shock waves. This scheme is ana-
lyzed and compared in detail with scalar dissipation and matrix dissipation (MATD)
schemes. Resolution capability is determined by solving subsonic, transonic, and
hypersonic flow problems. A finite-volume discretization and a multistage time-
stepping scheme with multigrid are used to compute solutions to the flow equations.
Numerical solutions are also compared with either theoretical solutions or exper-
imental data. For transonic airfoil flows the best accuracy on coarse meshes for
aerodynamic coefficients is obtained with a simple MATD scheme. The coarse-grid
accuracy for the original CUSP scheme is improved by modifying the limiter function
used with the scheme, giving comparable accuracy to that obtained with the MATD
scheme. The modifications reduce the background dissipation and provide control
over the regions where the scheme can become first order.c© 1998 Academic Press
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1. INTRODUCTION

Accuracy must be a primary consideration in the construction of any numerical scheme. In
principle one would like to devise a discrete scheme with the minimum amount of artificial
dissipation required for stability, as well as convergence in the case of a stationary solution.
This usually means imposing the additional constraint that the order of the numerical
dissipation is at least one order of magnitude smaller than the desired order of approximation.
For general fluid dynamic computations the numerical scheme should be designed to have
high accuracy in smooth regions of the flow field and high resolution at shock waves
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and contact discontinuities. According to Harten [3] such discrete formulations, where
the accuracy away from discontinuities is at least second order, are called high resolution
schemes. The design of these schemes for systems of conservation laws is generally based
on theory developed for a scalar conservation law. As a consequence one cannot ensure that
the properties of the scheme for the scalar equation are valid for the system. In addition,
schemes that permit high definition of shock waves without oscillations are first order in the
neighborhood of shocks. Concern naturally arises regarding contamination of the solution,
especially in the case of viscous flows. For these reasons the properties and resolution
capability of this class of schemes must be determined through numerical applications for
a wide range of flow conditions.

High resolution schemes of particular interest for solving the compressible Euler and
Navier–Stokes equations are those that allow shock capturing with a single interior point.
In [6] Jameson presents two schemes with this property that are derived from two different
forms of flux splitting. One scheme is designated a characteristic split formulation, and
it employs the flux difference splitting and linearization technique of Roe [19]. With this
scheme the diffusive flux depends on a flux Jacobian matrix. The other scheme is called
the convective upwind and split pressure (CUSP) scheme. For this scheme the artificial
diffusive flux vector associated with a given coordinate direction is expressed in terms of
changes in the state and flux vectors. A somewhat limited number of inviscid and viscous
computations have been performed to evaluate these schemes (see [6, 7, 27, 28]).

We shall investigate and analyze the CUSP scheme, with emphasis on the HCUSP version
which allows a solution with constant total enthalpy for steady flow. We discuss the shock-
capturing behavior for various choices of the dissipation coefficients. We introduce a simple
modification of the limiter function, which is generally used with the scheme, to control
background dissipation, and thus global accuracy. Global accuracy is also improved by
introducing parameters into the limiter function to augment control over the regions where
the CUSP scheme can become first order. The CUSP scheme includes a contribution that
is scaled according to the local velocity. If the velocity vanishes, as it does for viscous
flows, and there is a high aspect ratio mesh, the dissipation in the streamwise direction (i.e.,
direction of long side of mesh cell) may not be adequate for convergence. A change in
the velocity scaling factor based on aspect ratio is presented. The resolution capability of
the HCUSP scheme is evaluated for subsonic, transonic, and hypersonic flow problems. A
detailed comparison of the scheme with scalar and matrix dissipation schemes is performed.
The scalar scheme is based on the dissipation model of Jameson, Schmidt, and Turkel [4].

2. DISSIPATION

A finite-volume approach is applied to discretize the fluid dynamic equations of motion.
The computational domain is divided into quadrilateral cells, fixed in time, and for each
cell the governing equations can be nondimensionalized and written in integral form as

∂

∂t

∫ ∫
Ä

wdx dy+
∫
∂Ä

( f dy− gdx) =
√
γ M

Re

∫
∂Ä

( fv dy− gv dx), (2.1)

whereÄ is a generic cell (or cell area) with∂Ä its boundary. In the scaling factor for the
viscous terms on the right-hand side of (2.1), the quantitiesγ , M, and Re are the specific
heat ratio, Mach number, and Reynolds number, respectively, with M and Re defined in
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terms of nominal conditions. Takingw j,k as the cell-averaged solution vector, Eq. (2.1) can
be written in semi-discrete form as

d

dt
(Ä j,kw j,k)+ Lw j,k = 0, (2.2)

whereÄ j,k is the area of the cell, andL is a spatial discretization operator defined by

L = LC + LD + LAD, (2.3)

with the subscriptsC, D, and AD referring to convection, diffusion, and artificial dis-
sipation. In order to simplify the description of the dissipation model, we consider the
one-dimensional Euler equations of gas dynamics.

2.1. Scalar Dissipation Model

The scalar dissipation is based on the model introduced by Jameson, Schmidt, and Turkel
[4]. This model defines a switching function based on a blending of the second and fourth
differences. The term associated with the operatorLAD is expressed as

LADw j = −(D2− D4)w j = dj+1/2− dj−1/2. (2.4)

Then

D2w j = ∇
[(
λ j+1/2ε

(2)
j+1/2

)
1
]
w j , (2.5)

D4w j = ∇
[(
λ j+1/2ε

(4)
j+1/2

)
1∇1]w j , (2.6)

where the indexj refers to a cell center, and the operators1and∇ are forward and backward
difference operators. The variable scaling factorλ is defined as

λ j+1/2 = 1

2
[λ j + λ j+1], (2.7)

whereλ is the largest eigenvalue in absolute value (i.e., spectral radius) of the flux Jacobian
matrix associated with the Euler equations. For example, in theξ and η directions of
generalized coordinates (ξ, η),

λξ = |uyη − vxη| + c
√

x2
η + y2

η,

λη = |uxξ − uyξ | + c
√

x2
ξ + y2

ξ .

The coefficientsε(2) andε(4) use the pressure as a sensor for sharp gradients, and they are
defined as

ε
(2)
j+1/2 = κ(2) max(ν j−1, ν j , ν j+1, ν j+2), (2.8a)

ν j =
∣∣∣∣ pj−1− 2pj + pj+1

pj−1+ 2pj + pj+1

∣∣∣∣ , (2.8b)

ε
(4)
j+1/2 = max

[
0,
(
κ(4) − ε(2)j+1/2

)]
, (2.8c)
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where typical values for the constantsκ(2) andκ(4) are in the ranges14 to 1
2 and 1

64 to 1
32,

respectively. We shall refer to (2.4), together with (2.8) as the JST scheme, and (2.8) alone
as the JST switch. The switching functionν can be interpreted as a limiter, in the sense
that it activates the second-difference contribution at extrema and switches off the fourth-
difference term. Moreover, at shock waves the dissipation is first order, and a first-order
upwind scheme is produced for a scalar equation. In smooth regions of the flow field the
dissipation is third order.

Thus, we have two different dissipation mechanisms at work. The switch determines
which one is active in any given region. For smooth flows,ν is small and the dissipation
terms consists of a linear fourth difference that damps the high frequencies which the
central difference scheme does not damp. This is useful for achieving a steady state and
is not always necessary for time-dependent problems [9]. In the neighborhood of large
gradients in the pressure,ν becomes large and switches on the second-difference viscosity
while simultaneously reducing the fourth-difference dissipation. This is mainly needed to
introduce an entropy condition to reduce overshoots near discontinuities and to choose the
correct shock relationships. For subsonic steady state flow this can be turned off by choosing
κ(2)= 0.

One possible extension of the scaling factor of (2.7) to multidimensions is isotropic. In
two dimensions, with(ξ, η) denoting arbitrary curvilinear coordinates, the scaling factor
takes the form

λ j+1/2,k = 1

2
[(λξ ) j,k + (λξ ) j+1,k + (λη) j,k + (λη) j+1,k]. (2.9)

Such a scaling is generally satisfactory for inviscid flow problems when typical inviscid flow
meshes (i.e., cell aspect ratioO(1)) are used. This factor can cause excessive numerical
dissipation in cases of meshes with high-aspect-ratio cells. Instead, the scaling factor is
usually defined as

λ j+1/2,k = 1

2
[(λ̄ξ ) j,k + (λ̄ξ ) j+1,k], (2.10)

where

(λ̄ξ ) j,k = φ j,k(r )(λξ ) j,k,

(2.11)
φ j,k(r ) = 2ζ−1

(
1+ r ζj,k

)
,

r is the ratioλη/λξ , and the exponentζ is defined by 0≤ ζ ≤ 1. If ζ = 1, the isotropic
form of (2.9) is recovered. Ifζ = 0, the scaling in a given direction simply depends on
the eigenvalue associated with that direction. This scaling is sometimes called individual
eigenvalue scaling (see [14, 21]). The exponentζ is generally taken to be between1

2 and
2
3. Thus, this dissipation scaling factor is between the isotropic and individual eigenvalue
scaling factors. As demonstrated in [13, 21], this factor produces a significant improvement
in accuracy, relative to the isotropic factor for high-aspect-ratio meshes, and it permits good
convergence rates with a multigrid method.

Using the TVD concept, an alternative for the switch of (2.8) that is TVD for a scalar
equation is introduced in [22]. In one dimension this switch is given by

ν j = |pj+1− 2pj + pj−1|
|pj+1− pj | + |pj − pj−1| + ε . (2.12)
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and chooseκ(2)= 1
2. In practice we usually use a weaker form than (2.12), for example,

ν j = |pj+1− 2pj + pj−1|
(1− ω)PTVD+ ωP , (2.13)

where

PTVD = |pj+1− pj | + |pj − pj−1|,
P = pj+1+ 2pj + pj−1,

and 0≤ω≤ 1. The TVD switch of (2.12) is recovered whenω¿ 1. Typicallyω∼ 1/2. In
[23] this switch allowed the computation of flows with strong shock waves, whereas the
switch of (2.8) did not.

2.2. Matrix-Valued Dissipation Model (MATD)

Sharp resolution of shock waves without oscillations can be achieved by closely imitating
an upwind scheme in the neighborhood of a shock wave. A key feature of upwind schemes is
a matrix evaluation of the numerical dissipation. With this evaluation the dissipative terms
of each discrete equation are scaled by the appropriate eigenvalues of the flux Jacobian
matrix, rather than by the spectral radius, as in the JST scheme. A matrix dissipation model
can easily be constructed by starting with the JST formulation.

One can show [22] that the necessary modification of the JST scheme to produce a ma-
trix dissipation model is the substitution of|A| for the eigenvalue scaling factorλ in (2.5)
and (2.6). Since the Euler equations are a strongly hyperbolic system, the coefficient ma-
trix can be diagonalized. AssumeQ AQ−1=3 (diagonal matrix). Then|A| is defined as
|A| = Q−1|3|Q and|3| =diag(|λ1|, |λ2|, |λ3|), whereλi are the forward acoustic, back-
ward acoustic, and convective eigenvalues. An efficient way of computing|A| times a vector
is presented in [22].

In practice one cannot chooseλ1, λ2, λ3 as the eigenvalues. Near stagnation pointsλ3

approaches zero while near sonic linesλ1 or λ2 approaches zero. A zero artificial viscosity
would create numerical difficulties. Hence, we limit these values as

|λ̃1| = φmax(|λ1|,Vnρ(A)), |λ̃2| = φmax(|λ2|,Vnρ(A)), (2.14)

|λ̃3| = φmax(|λ3|,V`ρ(A)), (2.15)

whereφ is defined by (2.11),ρ(A) is the spectral radius of A, and the linear eigenvalueλ3

can be limited differently than the nonlinear eigenvalues. The parametersVn andV` have
been determined numerically. Typical values areVn= 0.25 andV`= 0.025.

2.3. CUSP Scheme

In the previous sections we have described the use of an artificial viscosity based on either
a scalar or matrix coefficient. Inspired by earlier work on flux-vector splitting [34] Liou and
co-workers designed a scheme called advection upstream splitting method (AUSM) [10, 11,
35]. This method was later refined for large-scale 3D viscous computations in [17]. AUSM is
based on a splitting of the flux function into convective and pressure contributions. In some
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sense, the pressure terms contribute to the acoustic waves while the velocity terms contribute
to convective waves. Hence, it is reasonable that these flux terms be treated differently.
Liou thus considers decompositions of the flux vector that are not based on a characteristic
decomposition but on Mach number scaled contributions of the left and the right states to the
interface flux. This decomposition has the disadvantage that it is more difficult to develop
for other sets of equations, compared with a characteristic decomposition. A similar type
scheme called the convective upwind split pressure (CUSP) scheme was later introduced by
Jameson [5] and subsequently modified by Tatsumi, Martinelli, and Jameson [7, 8, 27, 28].
The CUSP scheme has some advantages over AUSM. First, one can consider the scheme as
another type of artificial viscosity, since it is defined as a sum of the central flux average plus
a dissipative flux. Hence, it can be readily used with a variety of time-stepping schemes (e.g.,
multistage, LU, implicit). Second, the CUSP formulation can be used in a straightforward
manner with multistage schemes which do not evaluate the artificial dissipation fluxes at
every stage, in order to reduce computational work. Hence, we shall only describe the CUSP
version of this type of scheme.

2.3.1. Definition of CUSP Scheme

Previously, we introduced the scalar and matrix-valued viscosities by consideringdj+1/2

of the form

dj+1/2 = 1

2
Qj+1/2(w j+1− w j ). (2.16)

The factor1
2 is introduced so that we get full upwinding whenQj+1/2= I . We note that

for the scheme to be positive,Q must be sufficiently large. For the matrix viscosity we
choseQ= |A| (modified near zero eigenvalues) while for the scalar viscosity we chose
Q= σ(A)I .

For the CUSP scheme we instead choosed as a linear combination ofw and f . In one
dimension we consider two choices for the state vector:

w = (ρ ρu ρE)T

f = u

 ρ

ρu
ρE

+
 0

p
up

 = uw + f p

and

wh = (ρ ρu ρH)T

f = u

 ρ

ρu
ρH

+
 0

p

0

 = uwh + f p.

The first-order accurate CUSP scheme is defined as

dj+1/2 = 1

2
νc(w j+1− w j )+ β

2
( f j+1− f j ). (2.17)
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The factorc is included so thatν is dimensionless. We thus consider only scalar parameters
instead of a matrix coefficient, but we have two free parameters,ν andβ. The scheme
is total enthalpy preserving ifwh= (ρ ρu ρH)T is chosen as the basis. This choice is
denoted HCUSP by Jameson [7]. By using the arithmetic average,ū= 1

2(u j+1+ u j ), and
the definition

αc = νc+ βū.

One can rearrange (2.17) to obtain

dj+1/2 = 1

2
αc(w j+1− w j )+ β

2

(
f pj+1 − f pj

)+ β
2
w̄(u j+1− u j ).

Introducing the Roe matrixARL, we havefR− fL = ARL(wR−wL). This relation is exact
if ARL is computed from weighted averages of the left and the right states. That is,

u =
√
ρRuR+√ρLuL√
ρR+√ρL

H =
√
ρRHR+√ρL HL√
ρR+√ρL

(2.18)

ρ = √ρRρL .

Then the first-order dissipation is

dj+1/2 = 1

2
(βARL + νcI )(wR− wL). (2.19)

We see from this formula thatd is a linear function ofA. Recall that|A| is a quadratic
function of A, by the Cayley–Hamilton theorem. Hence, it is not possible to boundd by
|A|. Since|A| is the minimum dissipation needed for a scheme to be positive [26], the CUSP
scheme cannot be positive.

Remark. The parametersβ andν will be defined later in this section. For these pa-
rameters the CUSP scheme is not positive at least forM < 1/2. The concepts ofTVD and
positivity were introduced primarily for the treatment of discontinuities. Thus, it is not clear
theoretically if the loss of positivity for subsonic flow bounded away from the sonic line is
important. For supersonic flow (M ≥ 1) the CUSP scheme is positive.

Assume that the subscriptL denotes the interior point inside the shock zone,R is the
state downstream of the shock, and the stateL R is subsonic (as depicted in Fig. 1). Jameson
[7] shows that the downstream point with the stateR is in equilibrium if

fR− fL + νc

1+ β (wR− wL) = 0. (2.20)

Substituting the Roe matrix for the difference inf into (2.20) we get(
ARL + νc

1+ β I

)
(wR− wL) = 0.

Hence,wR−wL is an eigenvector ofARL, and−(νc)/(1+β) is the corresponding eigen-
value. However, the eigenvalues ofARL are known to beλ+, λ−, andu. If λ is an eigenvalue
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FIG. 1. Conditions at shock wave.

of A, then using this formula forνc in (2.19) we have

dj+1/2 = 1

2
[−λI + β(ARL − λI )](wR− wL).

In order to have a positive diffusion whenu> 0, we require thatλ be negative (i.e.,
−(νc)/(1+β)= λ−). Thus,

νc = −(1+ β)λ−. (2.21)

Foru< 0 we obtain similarly

νc = (1− β)λ+. (2.22)

So, we have reduced our two free parameters to one free parameter by demanding a one-
point shock profile. More generally, Jameson shows that one obtains a shock profile with
one interior point if the following two conditions hold:

1. When the flow is supersonic through the shock then one obtains a totally upwind flux.
2. The artificial dissipationQ satisfies a generalized eigenvalue problem

(ARL − αR AQR A)(wR− wA) = 0

at the exit from the shock.

The second condition is satisfied by both the matrix viscosity and the CUSP scheme;
however, the scalar viscosity does not satisfy the first condition. We again note that the
positive conditionQ≥ |A| is satisfied by the scalar and matrix viscosities but not by the
CUSP viscosity for all Mach numbers.

What remains to be done is to choose suitable functions forβ and νc which satisfy
the above requirements. Jameson’s choice forβ, which is based upon the eigenvalues
corresponding to the acoustic waves, is given by

β =


+max

(
0, u+ λ−

u− λ−
)
, if 0≤M< 1

−max
(
0, u+ λ+

u− λ+
)
, if −1<M< 0

sgn(M), if |M| ≥1.

(2.23)

The cutoffs,β ≥ 0 for u> 0 andβ ≤ 0 for u< 0, ensure that the pressure terms are discre-
tized centrally for small Mach numbers. Shock capturing with one interior point is obtained
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by taking

νc =


|u|, if β = 0

−(1+ β)λ−, if β > 0; 0< M < 1

(1− β)λ+, if β < 0;−1< M < 0

0, if |M| ≥ 1.

The dissipation coefficients are to be computed from Roe-averaged quantities as in (2.18).
They provide full upwinding for supersonic flow,β = sgn(M), ν= 0. The choice ofνc= |u|
for β = 0 yields a continuous dissipation coefficient in the subsonic region, and it does
not smear slip lines with|u| close to zero. This makes the CUSP formulation attractive
for viscous flow calculations with boundary layers. However, viscous flows are usually
discretized by using cells with large aspect ratio. It is well known that this situation requires
larger dissipation scaling in the direction of the long cell sides than given by|u|. We redefine
the dissipation coefficients in the individual coordinate directions. For theξ -direction we
have

νcξ = r+


max(|u|, δcr−), if β = 0,

−(1+ β)λ−, if β > 0; 0< M < 1,

(1− β)λ+, if β < 0;−1< M < 0,

0, if |M| ≥ 1,

(2.24)

wherer+ andr− are functions of the spectral radii in theξ andη directions (λξ andλη),
and they are defined as

r =
(
λη

λξ

)ζ
, r+ = max(r, 1), r− = min(r, 1).

The dissipation coefficient in theη-direction is defined correspondingly.

2.3.2. Simplified Scheme

Several modifications of the CUSP scheme have been in use so far. Based upon the
wh= (ρ ρu ρH)T system the dissipation coefficients presented in [7, 28] are

α =
{ |M|, if |M| ≥ ε,

1
2

(
ε + M2

ε

)
, if |M|<ε;

(2.25)

β =


+max

(
0, u+ λ−

u− λ−
)
, if 0 ≤ M < 1,

−max
(
0, u+ λ+

u− λ+
)
, if −1< M < 0,

sgn(M), if |M| ≥ 1.

This choice does not allow exact shock capturing because (2.21) and (2.22) are not satisfied.
Furthermore, Roe averaging has been replaced by arithmetic averaging in [7] andλ−, λ+

by u− c, u+ c, respectively. This simplification saves a few square roots in the coding of
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the dissipative flux. Equation (2.25) is then

α =
{ |M|, if |M| ≥ ε,

1
2

(
ε + M2

ε

)
, if |M| < ε;

(2.26)

β =


max(0, 2M− 1), if 0 ≤ M < 1,

min(0, 2M+ 1), if −1< M < 0,

sgn(M), if |M| ≥ 1.

3. HIGHER ORDER SCHEME

Having determinedνc andβ, we see from (2.17) that the scheme is completely defined
in terms ofw and f p. Formula (2.17), as given, is only first-order accurate, as it depends
only ondj+1/2=w j+1−w j , and so the complete artificial viscosity behaves like a second
difference. The purpose of this section is to combine a first-order accurate CUSP scheme
with a high-order dissipation.

Previously, we considered a combination of a low-order and high-order artificial viscosity
based on the scalar (JST) switch of (2.8). This switch has the disadvantage that one quantity,
the pressure, controls the shock sensor. Moreover, it forces all variables to be treated equal,
even though some experience sharp changes through the discontinuity while others are
continuous across the shock. The requirement to choose a particular flow variable for a
switch can be eliminated. One can instead limit independently each dependent variable
in each coordinate direction. Such a limiting allows the construction of a strictly upwind
scheme for the one-dimensional Euler equations rather than just for a scalar equation.

In [5] Jameson constructed a family of limiter functions based on the function

R(u, v) = 1−
∣∣∣∣ u− v
|u| + |v| + ε

∣∣∣∣q , (3.1)

whereq is a positive number andε has the dimensions ofu. The parameterε¿ 1, and
in this work it is taken to be 10−10. Note thatR(u, v)≈ 0 wheneveru and v have the
opposite sign. Letw be an element of the solution vector for the governing flow equa-
tions. Also, note that according to our previous theory [22]R(1w j+3/2,1w j−1/2), where
1w j+3/2=w j+2−w j+1, would be replaced byν j+1/2, whereν j+1/2 is the maximum ofν j

over the nearest neighbors andν is given by (2.12).
In the results section of this paper we will demonstrate that it can be beneficial to further

control the regions where the limiter is applied. Hence, we generalize (3.1) to

R(u, v) = 1−min(ev, ep, 1)

∣∣∣∣ u− v
|u| + |v| + ε

∣∣∣∣q , (3.2)

with

ev =
{

0, if M ≤ Mlimit ,

5M−1
limit (M −Mlimit ), if M > Mlimit ;

ep =
{

0, if ν ≤ νlimit ,

2ν−1
limit (ν − νlimit ), if ν > νlimit .
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The control parameters are the contravariant Mach number M and the pressure switchν,
as given in (2.13). Thus, the limiter cannot produce a first-order scheme in regions where
M≤Mlimit or ν ≤ νlimit . With the introduction of min(ev, ep, 1) in (3.2) the scheme is not
very sensitive to the value of the exponentq (typically, q= 1 orq= 2).

Define the limiter functionL(u, v) by

L(u, v) = R(u, v)
u+ v

2
. (3.3)

At the mesh cell interfacej + 1/2, we define the left and right states for each dependent
variable as

wL = w j + 1

2
L(1w j+3/2,1w j−1/2),

(3.4)

wR = w j+1− 1

2
L(1w j+3/2,1w j−1/2),

and so

wR− wL = 1w j+1/2− L(1w j+3/2,1w j−1/2). (3.5)

For the artificial viscosity all differences will be based onwR−wL . In the neighborhood of
shock wavesR(u, v) and, hence,L(u, v) are close to zero. Moreover,wR−wL =1w j+1/2,
resulting in a first-order scheme for the artificial viscosity. For smooth flowR(u, v)= 1,
andL(u, v)= (u+ v)/2. Hence, in a smooth region

wR− wL = 1w j+1/2− L(1w j+3/2,1w j−1/2)

' 1w j+1/2− 1w j+3/2+1w j−1/2

2

= −1

2
13w j+1/2. (3.6)

Thus, in the smooth regionswR − wL behaves as a third difference, while in the vicinity
of shock waves it behaves as a first difference. Consequently, (3.5) has similar properties
to the JST scheme. One can obtain the relationship between (3.5) and the JST scheme by
defining the diffusive fluxdj+1/2 as

dj+1/2 = α j+1/2(wR− wL), α j+1/2 = κ(2)λ j+1/2, (3.7)

whereκ(2) is a parameter, andλ is the spectral radius of the associated flux Jacobian matrix.
One difference between the JST scheme and (3.5) involves the parametersκ(2) andκ(4)

for the second and fourth differences, respectively. Bothκ(2) andκ(4) are free parameters
in the JST scheme. As seen from (3.6) and (3.7) these parameters are automatically chosen
asκ(2) and 1

2κ
(2) with (3.5). Furthermore, for the matrix viscosity (see Section 2.2) and

the CUSP scheme (described in Section 2.3)κ(2)= 1
2, and so we no longer have any free

parameters. The coefficient of the second difference is chosen as1
2 so that the scheme is

fully upwind for supersonic flows. However, the fourth-difference viscosity is introduced
only to accelerate the convergence to a steady state by eliminating the decoupling of the
odd and even points. Hence, we wishκ(4) to be as small as possible for accuracy while
still achieving a good convergence rate. It does not seem reasonable to connect the two
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components of the artificial viscosity. In Section 4 we will compare the magnitude of the
scalar viscosity and the CUSP scheme.

One can generalize the limiter function of (3.3) by reintroducing a free parameter that
essentially governs the level of the third-order viscosity in the smooth regions. The resulting
scheme has the disadvantage that a free parameter must be chosen; however, it has the
advantages of greater flexibility and increased accuracy. We now define a newL as

L(u, v, w) = R(u, w) ·
[(

1− 4κ(4)
)
v + 4κ(4)

u+ w
2

]
, (3.8)

where left and right state values are determined by

wL = w j + 1

2
L(1w j+3/2,1w j+1/2,1w j−1/2),

wR = w j+1− 1

2
L(1w j+3/2,1w j+1/2,1w j−1/2).

Whenκ(4)= 1
4, theL of (3.8) reduces to the originalL of (3.3). At shock wavesR(u, w)≈ 0,

and we again havewR − wL =1w j+1/2. For smooth regions of the flow field we have
wR− wL =−2κ(4)13w j+1/2.

One difficulty with (3.1), and indeed with any TVD switch, is that it limits the differences
near minima and maxima independent of the amplitude of the function. Hence, in the far
field where the solution is almost uniform the low-order scheme is activated by small noise
levels. Since this occurs randomly it frequently prevents the convergence of the residual
beyond three or four orders of magnitude. The use of (3.2) eliminates this difficulty.

The extrapolation technique of (3.8) can be used with (2.17) to get the first difference to
higher order accuracy. Then, the states corresponding to higher order accuracy are obtained
in a way similar to van Leer’s MUSCL approach [34]. To impose monotonicity one can
apply the limiter discussed in this section. For example, we can replace (2.17) by

dj+1/2 = νc

2
(wR− wL)+ β

2
[ f p(wR)− f p(wL)],

wherewR, wL are given by (3.4). This procedure was followed throughout the numerical
examples presented in Section 7. Application of (3.4) to thewh= (ρ ρu ρH)T variables
still allows total enthalpy to be preserved in the higher order scheme. When a multigrid
algorithm is used to solve the governing flow equations, the higher order scheme is applied
only on the finest mesh, and the lower order scheme is applied on the coarser meshes.

4. ANALYSIS OF CUSP SCHEME

The eigenvalues ofβARL + νcI (see 2.19) areµ1c, µ2c, andµ3c. Using the simplifica-
tions of (2.26) the eigenvalues are

µ1 = |M|;

µ2 =


|M| if |M|< 1

2,

α + β if 1
2 ≤M≤ 1,

|M + 1| if |M|> 1;

µ3 =


|M| if |M|< 1

2,

α − β if 1
2 ≤M≤ 1,

|M − 1| if |M|> 1.
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We note that for|M|< 1
2 all three eigenvalues of the artificial viscosity are equal, and so

we have the equivalent of a scalar viscosity. The scalar viscosity now scales with|M|c,
rather than(|M| +1)c as in the JST scalar viscosity. This is more similar to the case of
preconditioning, where all the eigenvalues are approximately|M|c for low speed flow.
Hence, we expect that the CUSP dissipation should work properly for very low Mach
numbers, provided the central flux terms are augmented by a suitable preconditioning matrix.

In the subsonic range, whereβ = 0, all of the versions of the CUSP scheme do not
satisfy (2.21) and (2.22), which are necessary for shock capturing. Thus, the cell-face Mach
numbers in the shock structure have to be larger than about 0.5 in order to avoid postshock
oscillations. The motivation to designνc= |u| whenβ = 0 has already been discussed.
However, the choice of the function forβ, as given in (2.23), is not necessarily optimal. For
example,β =max(0, (u+ 1

2λ
−)/(u−λ−))would allow shock-capturing for Mach numbers

down to about 1/3, but the subsonic dissipation would be twice as large,νc= 2|u| for β = 0.
Nevertheless, our own experience, gained from a number of numerical applications, suggests
that there is no need for further modifications ofβ.

It is rather difficult to compare the effect of the parameterκ(4) of the JST and the CUSP
schemes, since these schemes also include eigenvalue information which is not the same in
the two schemes. To isolate the effect we consider a low Mach number flow with precon-
ditioning (see [31] for details). Now both switches are based on the convective eigenvalue
u. A typical value for the JST scheme isκ(4)= 1

32. However, for an aspect ratio of one the
Martinelli scaling [13] adds another factor of two. The parameterα= 0 in the precondition-
ing adds an additional factor of approximately 2.6. Hence, the effective constant multiplying
the fourth difference is about532, which is somewhat smaller than the1

4 used with the original
CUSP scheme. For transonic flows it is more difficult to compare the levels of dissipation.
However, it seems that the original CUSP scheme yields too high a viscosity level and
so theκ(4) introduced in (3.8) should be reduced to less than1

4. Numerical computations
demonstrate the improved accuracy (although slower convergence) for standard transonic
turbulent flows whenκ(4) is reduced.

5. LOW SPEED PRECONDITIONING

For low Mach numbers standard algorithms converge to a steady state very slowly because
of the disparity between the convective and acoustic eigenvalues. Furthermore, it is also
found that most schemes give very poor results for these low Mach number flows, even when
a steady state is achieved [30–32]. One way to overcome these difficulties is to precondition
the equations by multiplying the time derivative terms by a matrixP−1. If P is appropriately
chosen, then one can reduce the disparity of the wave speeds. In this section preconditioning
is applied to the different dissipation schemes. Details of preconditioning techniques are
given in [31, 30].

To simplify the presentation we shall only consider a one-dimensional system. The ex-
tension to multidimensions is straightforward. Consider the system of equations

∂w

∂t
+ ∂ f

∂x
= 0.

We replace this by the preconditioned system

P−1∂w

∂t
+ ∂ f

∂x
= 0,
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or in quasi-linear form,

P−1∂w

∂t
+ A

∂w

∂x
= 0,

whereA= ∂ f/∂w. Introducing an artificial viscosity in conservation form, we get

P−1∂w

∂t
+ D0 f

21x
= 1

1x
∇[ε(2)P−1F(PA)1w

] = dj+1/2− dj−1/2

1x
,

∂w

∂t
+ P

D0 f

21x
= P
1x
∇[ε(2)P−1F(PA)1w

] = P
dj+1/2− dj−1/2

1x
,

(5.1)

where D0 denotes a central difference,∇ is a backward difference, and1 is a forward
difference operator.

We first consider the matrix-valued viscosity, and thusF(PA)= |PA|. The artificial
viscosity is

dj+1/2 = ε(2)j+1/2P−1
j+1/2|(PA) j+1/2|(w j+1− w j ),

P j dj+1/2 = ε(2)j+1/2P j P−1
j+1/2|(PA) j+1/2|(w j+1− w j ).

When PA has only three distinct eigenvalues, then by the Cayley–Hamilton theorem
|PA| =α0I +α1P A+α2(P A)2, where the coefficientsαi depend on the eigenvalues of
PA. So

P−1|PA| = α0P−1+ α1A+ α2PA2.

We next consider the CUSP artificial viscosity. The artificial viscosity term is given by
α01w+α11 f ∼α01w+α1A1wwith the appropriate coefficientsαi for theCUSPscheme.
This has the same form as the matrix-valued artificial viscosity without the quadratic term,
and so by the identical reasoning we get

dj+1/2 = 1

2
νcP−1

j+1/2(w j+1− w j )+ β
2
( f j+1− f j )

(5.2)

P j dj+1/2 = 1

2
νcP j P−1

j+1/2(w j+1− w j )+ β
2

P j ( f j+1− f j )

(compare with (2.17)). In theory the parametersν andβ should depend on the eigenvalues
of PA, rather thanA, and so are not the same as the nonpreconditioned version of CUSP.
However, in order to not interfere with the shock properties of the CUSP scheme we
turn off the preconditioning for M> 1/2. Hence, the relationship (2.21) is still valid. The
parameterβ would then be chosen by (2.23), where the eigenvaluesλ+, λ− should account
for the preconditioning. In addition, for|M|< 1/2 the CUSP scheme reduces to a scalar
viscosity proportional to the convective velocity which is appropriate for preconditioning.
Hence, it is reasonable to use the same parametersν andβ for the preconditioned CUSP as
given by (2.21), based on the original eigenvalues or one of the simplifications previously
discussed. The advantages of combining the CUSP scheme with preconditioning are shown
in Section 7. Additional results with the preconditioned CUSP scheme are presented in [33].
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6. SUMMARY

The central difference scheme requires an artificial viscosity in order to both prevent
oscillations near shocks and damp high frequencies, enabling the iteration procedure to
reach a steady state. In the Jameson, Schmidt, Turkel (JST) formulation these artificial
viscosities are provided by second and fourth differences of the variables with a scalar
coefficient included. This scalar coefficient depends on the largest eigenvalue (in each
direction) to scale the size of the viscosity. In addition, the coefficient depends on the
second difference of the pressure to sense shocks. In the neighborhood of shocks the fourth
difference is turned off while the second difference prevents overshoots. In smooth regions
of the flow the second difference (which leads to first-order accuracy) is minimal while the
fourth difference damps the high-frequency errors.

This technique works quite well for transonic flow and was the main approach for many
years. With the increasing popularity of upwind schemes it was seen that this scheme is
less accurate than upwind schemes, especially on coarse meshes (see, e.g., [1]). This led
to the introduction of a matrix-valued coefficient in the artificial viscosity (dissipation) that
mimics the effects of an upwind scheme, but within the context of a central difference
scheme with an artificial dissipation, coupled with a multistage time advancement. Later
Jameson introduced the CUSP scheme, which is in between the matrix dissipation and the
scalar dissipation schemes. With theCUSPscheme the dissipation is a function of the Mach
number and becomes fully upwind in supersonic regions similar to the matrix dissipation.
However, it avoids the need for a full-matrix coefficient while still obtaining one-point shock
profiles. The CUSP scheme is more expensive than the matrix–viscosity method, since it
uses extrapolation for each flow variable and limiting, depending on the variable, to achieve
second-order accuracy,

The idea of using the Mach number to mimic fully upwind methods has been useful in
other applications besides the artificial viscosity. One can use the Mach number to adjust
the parameters of the residual smoothing so that it becomes fully upwind in supersonic
regions. Similarly, one can construct a multigrid method with weighting factors depending
on the Mach number such that it becomes fully upwind in supersonic regions. We label this

6.1. Poor Man’s Upwinding

Advantages

• Cheap
• Fully upwind in supersonic flow.

Disadvantage

• Not fully upwind for subsonic flow.

Applications

• Residual smoothing
• CUSP scheme
• Multigrid.

In the opposite direction the Mach number can be used to construct a preconditioning
that is useful in low Mach number regions. Then the Mach number can be used to turn off
the preconditioning in supersonic regions.
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FIG. 2. Inviscid pressure distributions computed with (a) MATD scheme and (b) HCUSP scheme (NACA
0012 airfoil,M = 0.80, α= 1.25◦).

7. NUMERICAL RESULTS

In the numerical applications presented here we assess the accuracy and shock capturing
capabilities of the CUSP scheme. Since the version of the CUSP scheme that we consider
is expressed in terms of the total enthalpyH and is H -preserving for inviscid flows, it
is usually called the HCUSP scheme. Comparisons are made between the HCUSP and
MATD schemes. The commonly used scalar dissipation scheme is also included in some
of the comparisons. In so doing one can clearly see the superiority of the high-resolution
HCUSP and MATD schemes on even relatively coarse meshes (i.e., 16 cells in the boundary
layer of a viscous flow). The flow problems considered in the evaluation of these numerical
diffusion schemes include the following: (1) inviscid flow over airfoils; (2) laminar flow
over a flat plate; (3) turbulent flow over an airfoil; (4) inviscid and viscous hypersonic flow
over a 2D wedge. The computational effort and convergence behavior in computing these
solutions are given. In all cases a five-stage Runge–Kutta scheme, in conjunction with the
convergence acceleration techniques of local time stepping, implicit residual smoothing
and multigrid were used.

The first case is similar to the application published in [7]. Results obtained with the
MATD and HCUSP schemes for inviscid transonic flow over the NACA 0012 airfoil are
compared in Figs. 2 and 3. The free-stream Mach number for this case is 0.8 and the angle
of attack is 1.25◦. Solutions were computed on three successively finer C-topology meshes.
The coarsest mesh contained 192× 32 cells, with 160 cells on the airfoil, and for each

FIG. 3. (a) MATD solutions and (b) HCUSP solutions near lower surface shock (NACA 0012 airfoil,
M = 0.80, α= 1.25◦).
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TABLE I

Lift and Drag Coefficients for Inviscid Flow over NACA 0012 Airfoil

Dissipation
scheme Grid CL CD

MATD 192× 32 0.3521 0.02249
384× 64 0.3550 0.02256
768× 128 0.3552 0.02256

HCUSP 192× 32 0.3667 0.02419
384× 64 0.3610 0.02310
768× 128 0.3582 0.02278

HCUSP 192× 32 0.3639 0.02297
(modified) 384× 64 0.3592 0.02279

768× 128 0.3563 0.02269

Note.M∞ = 0.80; α= 1.25◦.

sequential mesh the number of cells in each coordinate direction was doubled. The princi-
pal differences between the solutions occur at the shock waves. Since the MATD scheme
uses a pressure switch for all the flow equations, it cannot capture a shock with a single
interior point. It requires three interior points. Nevertheless, the resolution of the stronger
upper surface shock is nearly the same for both the MATD and HCUSP schemes on the
384× 64 and 768× 128 meshes. With the MATD formulation there is some smearing on
the 192× 32 mesh. As is clearly evident in Fig. 3 the HCUSP scheme allows a sharp defi-
nition of the weak lower surface shock and the Zierep singularity that immediately follows.
The aerodynamic coefficients calculated with the MATD, original HCUSP (with limiter of
(3.1)), and modified HCUSP (with limiter of (3.2)) schemes are presented in Table I. The
coefficients computed with the MATD scheme on the 384×64 mesh essentially agree with
those for the finest grid. The lift coefficients determined with the original and modified
HCUSP schemes on the corresponding meshes are slightly higher, with the finest grid val-
ues approaching those obtained with the MATD scheme. Drag coefficients obtained with
the modified HCUSP scheme are in closer agreement with those obtained with the MATD
scheme, especially on the coarsest grid. Later, in the discussion viscous airfoil flow results
we will show the behavior of the two forms of the limiter in the flow field.

As an initial evaluation of the dissipation schemes for viscous flows we consider low-
speed(M∞= 0.15) flow over a flat plate at zero incidence. For this flow the Reynolds
number per unit length is 105. The computational domain is a rectangle. With respect to
the leading edge of the plate, the domain extends two plate lengths upstream and one plate
length downstream. The upper boundary is four plate lengths above the plate. Solutions
were computed on the same domain and grids used in [28]. Starting with the finest mesh,
coarser meshes were determined by successively eliminating every other mesh line. The
finest grid consists of 512× 128 cells, with 384 cells on the plate. In the directiony normal
to the plate the grid is spaced uniformly in the boundary-layer coordinateη (η= y/Re1/2

x ),
wherex is the coordinate parallel to the surface, and Rex is the Reynolds number based
on distance from the leading edge of the plate). Thus, there is constant resolution of the
boundary layer at each location along the plate. Outside the boundary layer the grid is
stretched exponentially. In order to resolve the region in the vicinity of the stagnation point,
the grid is clustered at the leading edge of the plate. At the surface of the plate no-slip and
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adiabatic boundary conditions are enforced. Along the boundary upstream of the leading
edge, a symmetry condition is applied. Characteristic type boundary conditions are used at
the upstream, downstream, and upper boundaries.

A comparison of the velocity profile atX/L = 0.82 computed with the scalar, matrix,
and HCUSP dissipation forms is displayed in Fig. 4. Even with just eight points in the
boundary layer(64× 16 grid) the MATD and HCUSP schemes nearly replicate the Blasius
solution. As demonstrated in [1] scalar dissipation can produce serious contamination. With
the scalar dissipation, more than 32 points are required in the boundary layer to obtain a
grid converged solution. For the MATD and HCUSP schemes the variations of the errors
(relative to the Blasius solution) in the calculated skin friction, displacement thickness, and
momentum thickness are shown in Figs. 5a and 5b. The standard definitions given in [20]

FIG. 4. Boundary-layer profiles on flat plate with M= 0.15 and Re= 105: (a) tangential and transverse velo-
city profiles, X/L= 0.82, 64× 16 grid; (b) tangential and transverse velocity profiles, X/L= 0.82, 128× 32 grid;
(c) tangential and transverse velocity profiles, X/L= 0.82, 256× 64 grid.
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FIG. 5. Comparison of results with (a) the MATD scheme and (b) the HCUSP scheme each with the Blasius
solution (M= 0.15 and Re= 105).

are used for these boundary-layer quantities. The errors in all the boundary-layer parameters
are quite similar for the high-resolution schemes. This is not surprising since both schemes
have a scaling factor that vanishes as the surface is approached.

Transonic flow over the RAE 2822 airfoil is the next test case. The free-stream Mach
number is 0.73, the angle of attack is 2.79◦, and the Reynolds number, based on the airfoil
chord, is 6.5× 106. Transition of the flow from laminar to turbulent is fixed at the 3% chord
location. The C-type grids used in the computations are as follows: (1) 160× 32 with 128
cells on the airfoil, (2) 320× 64 with 256 cells on the airfoil, and (3) 640× 128 with 512
cells on the airfoil. In order to determine the effect of further mesh refinement a calculation
was performed with the MATD scheme on a 1280× 256 grid. As in the flat-plate case,
each successively coarser grid was generated by eliminating every other mesh line in both
coordinate directions of the finer mesh. The outer boundary is located 20 chords from the
airfoil. The normal spacing at the surface of the 640× 128 mesh is 7.5× 10−6 chords. At
the leading and trailing edges of the airfoil the mesh is clustered, giving tangential spacings
of 1.17× 10−3 and 1.86× 10−3 chords, respectively. These critical mesh-defining spacings
are roughly doubled with each mesh coarsening.

In Fig. 6 the pressure(Cp) and surface skin-friction(C f ) distributions computed with
the different dissipation schemes for the 160× 32 mesh described are shown, along with the
experimental data of [2]. As in the inviscid cases the primary differences in the solutions oc-
cur at the shock wave. Both the scalar dissipation (SCALAR) and HCUSP schemes produce
a solution with the shock too far upstream. This is an unexpected result for the HCUSP

FIG. 6. Comparison of (a) pressure distributions and (b) skin-friction distributions each SCALAR, MATD,
and HCUSP schemes on 160× 32 grid (RAE 2822 airfoil, M= 0.73, α= 2.79◦,Re= 6.5× 106).
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FIG. 7. Contours of functionR(u, v) in limiter used with HCUSP scheme; (a) basic limiter and (b) modified
limiter that depends on the contravariant Mach number and pressure switch (RAE 2822 airfoil grid 160× 32).

scheme. The acceleration of the flow upstream of the shock is underpredicted, relative to the
finest grid. In [24] the adverse effect of a smooth limiter on the accuracy of the solution in the
vicinity of flow transition and, thus, on the acceleration of the flow upstream of the shock, is
demonstrated. Therefore, such a result with the HCUSP scheme could be a consequence of
the smooth limiter being used. Thus, we examined the behavior of the limiter in the flow field.

The action of the limiter is revealed by the contour plot of Fig. 7 for the minimum of the
limiter functionR(u, v) (see (3.2)) taken over all four flow variables. The contours indicate
that the basic limiter produces a first-order scheme over significant portions of the flow
field. This result suggests that the inaccuracy on the coarse grid with the HCUSP scheme
is not simply a consequence of the behavior of the limiter in the transition region. Figure 7
also shows contours of the modified functionR(u, v) which uses both the contravariant
Mach number and the pressure switch of (2.13). With this function the low-order scheme
occurs only at shock waves. Coarse grid results obtained with the basic and modified limiter
functions are displayed in Fig. 8. The shock locations computed with the modified HCUSP
scheme and the MATD scheme are nearly the same.

In Figs. 9 and 10 the solutions computed on the finer grids with the modified HCUSP
scheme are compared with the other dissipation schemes. The pressure and skin-friction dis-
tributions obtained with the MATD and modified HCUSP schemes exhibit little difference
on each mesh. The SCALAR scheme begins to show fairly close agreement with those

FIG. 8. Effect of modifications (pressure switch and reduced background dissipation) inHCUSPscheme on
(a) pressure and (b) skin friction (160× 32 grid, RAE 2822 airfoil, M= 0.73, α= 2.79◦,Re= 6.5× 106).
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FIG. 9. Comparison of (a) pressure distributions and (b) skin-friction distributions each with SCALAR,
MATD, and HCUSP schemes on 320× 64 grid (RAE 2822 airfoil, M= 0.73, α= 2.79◦,Re= 6.5× 106).

from the other schemes only on the 640× 128 grid. With both the SCALAR and the MATD
schemes a nonphysical increase in the skin-friction solution on the upper surface appears at
the trailing edge of the airfoil. This nonphysical increase is caused primarily by the aspect-
ratio function of (2.11). As evident in Fig. 11, this behavior does not occur in the solution
obtained with theHCUSPscheme. The computed aerodynamic coefficients, including the
pressure and friction contributions to the total drag, are given in Table II. On each mesh the
lift and drag coefficients corresponding to the solution obtained with the MATD scheme
exhibit the closest agreement with the 1280× 256 grid values. There are only small dis-
crepancies in the coefficients associated with the MATD and the modified HCUSP schemes
on the 320× 64 grid (see also Fig. 12).

Convergence behavior for the HCUSP and MATD schemes is similar. For each scheme
five levels of multigrid were used and either 50 or 100 cycles were executed on two coarser
meshes in order to obtain an initial solution. On the 320× 64 grid the average rate of
reduction of the residual with both schemes is about 0.92 for 100 cycles on the finest mesh.
Figure 13 shows the effect of modifying the limiter according to (3.8) and (3.2) on the
convergence with the HCUSP scheme. It also indicates the effect of the modification given
by (2.24) toνc in the HCUSP scheme. The convergence is improved by using the 2D
formulation for the dissipation coefficientνc. Convergence stall can occur with the original
limiter. With the modified limiter and the pressure switch this stall is prevented. Note that
convergence withζ = 0 was possible for this transonic case but not for the hypersonic case
presented below.

FIG. 10. Comparison of (a) pressure distributions and (b) skin-friction distributions each with SCALAR,
MATD, and HCUSP schemes on 640× 128 grid (RAE 2822 airfoil, M= 0.73, α= 2.79◦,Re= 6.5× 106).
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TABLE II

Lift and Drag Coefficients for Turbulent Flow over RAE 2822 Airfoil

Dissipation scheme Grid CL CD CDp CD f

SCALAR 160× 32 0.8172 0.01728 0.01275 0.004532
320× 64 0.8331 0.01743 0.01194 0.005487
640× 128 0.8532 0.01782 0.01225 0.005574

MATD 160× 32 0.8304 0.01818 0.01251 0.005662
320× 64 0.8538 0.01808 0.01250 0.005571
640× 128 0.8597 0.01799 0.01246 0.005535

1280× 256 0.8611 0.01800 0.01246 0.005544

HCUSP 160× 32 0.7987 0.01926 0.01367 0.005594
320× 64 0.8493 0.01831 0.01263 0.005679
640× 128 0.8592 0.01803 0.01245 0.005585

HCUSP 160× 32 0.8271 0.01760 0.01190 0.005701
(modified) 320× 64 0.8565 0.01801 0.01234 0.005673

640× 128 0.8604 0.01798 0.01240 0.005581

Note.M∞ = 0.73;α= 2.79◦;Rec= 6.5× 106.

FIG. 11. Behavior of skin-friction at airfoil trailing edge with SCALAR, MATD, and HCUSP schemes on
320× 64 grid (RAE 2822 airfoil, M= 0.73, α= 2.79◦,Re= 6.5× 106).

FIG. 12. Variation of (a) lift and (b) drag coefficients with reciprocal of number of points (RAE 2822 airfoil,
M= 0.73, α= 2.79◦,Re= 6.5× 106).
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FIG. 13. Effect of limiter and modifiedνc on convergence history of HCUSP scheme (RAE 2822 airfoil,
M∞ = 0.73, α= 2.79◦,Rec= 6.5× 106): (a) original limiter; (b) modified limiter.

The fourth case is the hypersonic 2D flow over a blunt wedge. Figure 14 displays the
second-order accurate solutions obtained for viscous and inviscid flow by using identical
meshes of 64× 48 cells. Physical diffusion is so large that the shock profile is significantly
smeared in the viscous result. For inviscid flow, on the other hand, we obtain perfect cap-
turing with a single interior point in the shock structure by using the formulation of (2.23)
and (2.24). Detailed comparisons of the hypersonic wedge flow solutions yielded by the
CUSP scheme and AUSM have been presented in [16]. It was found that the shock capturing
capabilities of both schemes are essentially equal. A comparison of shock profiles for the
exact and the simplified coefficients is given in Fig. 15. Here, we have chosen the first-order
scheme in order to address the pure shock-capturing capability of the CUSP scheme without
interference from the limiter. The simplified dissipation coefficients of (2.26) produce strong
oscillations at the shock, even though there is substantial physical diffusion present. Hence,
it is concluded that an accurate implementation of dissipation coefficients is a requirement
for hypersonic flows with strong shocks.

Some applications of the MATD scheme to hypersonic flow problems are given in [23].
However, we find that matrix dissipation, combined with a pressure-based sensor in order
to switch from second to fourth differences, has not yet resulted in sufficient robustness to

FIG. 14. Viscous and inviscid hypersonic flow over 2D wedge (second-order result).
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FIG. 15. Influence of HCUSP dissipation coefficients on hypersonic flow over 2D wedge.

deal with hypersonic flow phenomena in general. In particular, it seems that the user-defined
coefficients in (2.13)–(2.15) need adjustment, depending on the flow problem. Moreover,
it is well known that matrix dissipation schemes suffer from an instability known as the
carbuncle problem [15], and they need rather large values ofVn andVl in order to restore
stability.

The final set of results show the behavior of the HCUSP scheme with preconditioning.
Inviscid solutions for flow over a NACA 0012 airfoil were computed on a C-type grid with
224× 40 cells and clustering at the leading and trailing edges. In Fig. 16 Mach number
contours delineate the effect of the free-stream Mach number on the solutions obtained with

FIG. 16. Influence of free-stream Mach number on the inviscid flow around NACA 0012 airfoil with the
preconditioned HCUSP scheme.
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FIG. 17. Influence of preconditioning on the HCUSP scheme.

the preconditioned HCUSP scheme. Figure 17 clearly illustrates the benefits of precondi-
tioning on the HCUSP scheme. There is a substantial improvement in not only the quality
of the solution but also the convergence behavior with the scheme.

Comparisons of computation times indicate that the HCUSP scheme needs about 25%
more computer time than the basic scalar dissipation of Section 2.1. The MATD scheme
only requires about 15% additional time. This reduction is primarily a consequence of the
single evaluation of the limiter function. Due to lower inherent dissipation, computations
with the HCUSP formulation converge somewhat slower for transonic flows than those
with simple scalar dissipation. The major advantage of the HCUSP approach is that it is
more accurate and more robust than scalar viscosity. Our numerical tests indicate that the
accuracy of the CUSP scheme is close to that of matrix dissipation for transonic flows,
provided the first-order scheme is activated at shock waves only. For hypersonic flows it
seems to be more robust than the matrix viscosity, even though it is not positive. Since
the HCUSP scheme is implemented through artificial dissipative terms, it does not have to
be applied at each stage of the Runge–Kutta method. In particular, the diffusive fluxes can
be evaluated only at the first, third, and fifth stages of a five-stage method, as is typically
done for the scalar dissipation.

8. CONCLUDING REMARKS

The CUSP scheme has been studied and analyzed. A detail comparison has been made
between the CUSP, MATD, and scalar dissipation schemes. For transonic inviscid flows
the CUSP scheme allows better resolution of shock waves, since they are captured with one
interior point. However, the aerodynamic quantities such as lift and drag obtained with the
original CUSP scheme are not as accurate on coarser meshes (i.e., 320× 64 cells or less) as
those calculated with the MATD scheme. Both the CUSP and MATD formulations can give
high accuracy in the computation of viscous flows. In the case of high Re number flow over
a flat plate, each of these schemes required only eight points in the boundary layer to have
errors in computed skin-friction, displacement thickness, and momentum thickness that do
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not exceed 3%. Four times as many points are necessary to obtain comparable accuracy
with the scalar scheme. For transonic viscous flows and coarser meshes the accuracy in
aerodynamic coefficients is somewhat better with the MATD scheme than with the original
CUSP scheme. This loss in accuracy with the CUSP scheme on coarser grids appears to be
a consequence of the limiter producing a first-order scheme over significant portions of the
flow field and higher levels of background dissipation.

Modifications to the CUSP scheme for improving the coarse-grid accuracy have been
presented. These changes restrict the activation regions of the first-order scheme to the
neighborhoods of shock waves according to (3.2) and reduce background dissipation using
the limiter of (3.8). They allow the CUSP scheme to give comparable accuracy to that
obtained with the MATD scheme on coarse meshes. With these modifications to the CUSP
scheme, convergence stall has been removed. Convergence has been further improved by
introducing the aspect-ratio scaling factor of (2.24).

In comparison to the scalar scheme the CUSP scheme requires roughly 25% more com-
puter time while the MATD scheme needs about 15% more time. In general, convergence
behavior with the CUSP and MATD schemes is similar.

With our present choice of HCUSP dissipation coefficients it has been shown that the
resolution of strong shock waves occurring in hypersonic flows is possible, whereas the
simplified coefficients that were published previously failed. At this point the HCUSP
scheme appears to be a better choice than the present MATD scheme for hypersonic flow
problems.
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