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Several schemes for introducing an artificial dissipation into a central difference
approximation to the Euler and Navier—Stokes equations are considered. The focus
of the paper is on the convective upwind and split pressure (CUSP) scheme, which is
designed to support single interior point discrete shock waves. This scheme is ana-
lyzed and compared in detail with scalar dissipation and matrix dissipation (MATD)
schemes. Resolution capability is determined by solving subsonic, transonic, and
hypersonic flow problems. A finite-volume discretization and a multistage time-
stepping scheme with multigrid are used to compute solutions to the flow equations.
Numerical solutions are also compared with either theoretical solutions or exper-
imental data. For transonic airfoil flows the best accuracy on coarse meshes for
aerodynamic coefficients is obtained with a simple MATD scheme. The coarse-grid
accuracy for the original CUSP scheme isimproved by modifying the limiter function
used with the scheme, giving comparable accuracy to that obtained with the MATD
scheme. The modifications reduce the background dissipation and provide control
over the regions where the scheme can become first ordgress Academic Press

Key Wordsnumerical dissipation; Euler; Navier—Stokes.

1. INTRODUCTION

Accuracy must be a primary consideration in the construction of any numerical schem
principle one would like to devise a discrete scheme with the minimum amount of artific
dissipation required for stability, as well as convergence in the case of a stationary solu
This usually means imposing the additional constraint that the order of the numel
dissipationis atleast one order of magnitude smaller than the desired order of approxime
For general fluid dynamic computations the numerical scheme should be designed to
high accuracy in smooth regions of the flow field and high resolution at shock wa
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and contact discontinuities. According to Harten [3] such discrete formulations, wh
the accuracy away from discontinuities is at least second order, are called high resol
schemes. The design of these schemes for systems of conservation laws is generally
on theory developed for a scalar conservation law. As a consequence one cannot ensu
the properties of the scheme for the scalar equation are valid for the system. In add
schemes that permit high definition of shock waves without oscillations are first order in
neighborhood of shocks. Concern naturally arises regarding contamination of the solu
especially in the case of viscous flows. For these reasons the properties and reso
capability of this class of schemes must be determined through numerical application
a wide range of flow conditions.

High resolution schemes of particular interest for solving the compressible Euler
Navier—Stokes equations are those that allow shock capturing with a single interior p
In [6] Jameson presents two schemes with this property that are derived from two diffe
forms of flux splitting. One scheme is designated a characteristic split formulation,
it employs the flux difference splitting and linearization technique of Roe [19]. With tt
scheme the diffusive flux depends on a flux Jacobian matrix. The other scheme is c
the convective upwind and split pressure (CUSP) scheme. For this scheme the arti
diffusive flux vector associated with a given coordinate direction is expressed in term
changes in the state and flux vectors. A somewhat limited number of inviscid and visc
computations have been performed to evaluate these schemes (see [6, 7, 27, 28]).

We shall investigate and analyze the CUSP scheme, with emphasis on the HCUSP ve
which allows a solution with constant total enthalpy for steady flow. We discuss the shc
capturing behavior for various choices of the dissipation coefficients. We introduce a sir
modification of the limiter function, which is generally used with the scheme, to cont
background dissipation, and thus global accuracy. Global accuracy is also improve
introducing parameters into the limiter function to augment control over the regions wt
the CUSP scheme can become first order. The CUSP scheme includes a contributio
is scaled according to the local velocity. If the velocity vanishes, as it does for visc
flows, and there is a high aspect ratio mesh, the dissipation in the streamwise direction
direction of long side of mesh cell) may not be adequate for convergence. A chang
the velocity scaling factor based on aspect ratio is presented. The resolution capabill
the HCUSP scheme is evaluated for subsonic, transonic, and hypersonic flow probler
detailed comparison of the scheme with scalar and matrix dissipation schemes is perfor
The scalar scheme is based on the dissipation model of Jameson, Schmidt, and Turk

2. DISSIPATION

A finite-volume approach is applied to discretize the fluid dynamic equations of moti
The computational domain is divided into quadrilateral cells, fixed in time, and for e:
cell the governing equations can be nondimensionalized and written in integral form a

M
3// wdxdy+/ (fdy—gdx = YV / (f,dy—g,dx,  (2.1)
ot Q 90 Re Jiq

where(2 is a generic cell (or cell area) withe2 its boundary. In the scaling factor for the
viscous terms on the right-hand side of (2.1), the quantjtied, and Re are the specific
heat ratio, Mach number, and Reynolds number, respectively, with M and Re define
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terms of nominal conditions. Taking; x as the cell-averaged solution vector, Eg. (2.1) ca
be written in semi-discrete form as

d
a(Qj,ka,k) + Lwjk =0, (2.2)
whereg; i is the area of the cell, anfl is a spatial discretization operator defined by
L=Lc+ Lo+ Lap, (2.3)

with the subscriptsC, D, and AD referring to convection, diffusion, and artificial dis-
sipation. In order to simplify the description of the dissipation model, we consider
one-dimensional Euler equations of gas dynamics.

2.1. Scalar Dissipation Model

The scalar dissipation is based on the model introduced by Jameson, Schmidt, and T
[4]. This model defines a switching function based on a blending of the second and fo
differences. The term associated with the operAigy is expressed as

Lapwj = —(D? = DHwj = dj112 — dj_12. (2.4)

Then
D?wj = V[(%j41/26212) Al wj, (2.5)
D*wj = V[(Aj41/28]01,2) AVA]wj, (2.6)

where the index refers to a cell center, and the operatarandV are forward and backward
difference operators. The variable scaling factis defined as

1
Ajt12 = E[)»j + Aj4al, (2.7)

where is the largest eigenvalue in absolute value (i.e., spectral radius) of the flux Jaco
matrix associated with the Euler equations. For example, inttla@d n directions of
generalized coordinates, (),

he = Uy, — vXy| +Cy /X2 + Y2,
_ _ 2 2
Ay = |UXe uyg|+c,/x§+y5.

The coefficients@ ands® use the pressure as a sensor for sharp gradients, and they
defined as

(2) 2
Eif12 = K )maX(ijl, Vi, Vj41, Vj42), (2.8a)

Pj-1—2pj + Pj+1
Pj—1+ 2pj + Pj+1

0=

: (2.8b)

8}‘21/2 = max[0, (x“ — 8}?1/2)], (2.8¢c)



SOME NUMERICAL DISSIPATION SCHEMES 521

where typical values for the constanrt®’ and«® are in the rangeg to  and g to 3,
respectively. We shall refer to (2.4), together with (2.8) as the JST scheme, and (2.8)
as the JST switch. The switching functiorcan be interpreted as a limiter, in the sens
that it activates the second-difference contribution at extrema and switches off the fo
difference term. Moreover, at shock waves the dissipation is first order, and a first-o
upwind scheme is produced for a scalar equation. In smooth regions of the flow field
dissipation is third order.

Thus, we have two different dissipation mechanisms at work. The switch determ
which one is active in any given region. For smooth flowss small and the dissipation
terms consists of a linear fourth difference that damps the high frequencies which
central difference scheme does not damp. This is useful for achieving a steady stat
is not always necessary for time-dependent problems [9]. In the neighborhood of I
gradients in the pressurepbecomes large and switches on the second-difference visco:
while simultaneously reducing the fourth-difference dissipation. This is mainly neede
introduce an entropy condition to reduce overshoots near discontinuities and to choos
correct shock relationships. For subsonic steady state flow this can be turned off by cho
k@ =0.

One possible extension of the scaling factor of (2.7) to multidimensions is isotropic
two dimensions, with(&, ) denoting arbitrary curvilinear coordinates, the scaling fact
takes the form

1
Ajt1/2k = E[(/\s)j,k + Ae)jrik + A ik + Ay ikl (2.9)

Such ascaling is generally satisfactory for inviscid flow problems when typical inviscid fl
meshes (i.e., cell aspect rati®(1)) are used. This factor can cause excessive numeri
dissipation in cases of meshes with high-aspect-ratio cells. Instead, the scaling fact
usually defined as

1 - _
Aj+12k = E[()Lg)j,k + (Ae) j+1.kl, (2.10)

where

)ik = Gk e) ks
(2.11)
qu‘k(r) = 2{_1(1+I’ik>,

r is the ratioi,/A¢, and the exponent is defined by G<¢ < 1. If ¢ =1, the isotropic
form of (2.9) is recovered. It =0, the scaling in a given direction simply depends o
the eigenvalue associated with that direction. This scaling is sometimes called indivi
eigenvalue scaling (see [14, 21]). The expongig generally taken to be betweérand
%. Thus, this dissipation scaling factor is between the isotropic and individual eigenv:
scaling factors. As demonstrated in [13, 21], this factor produces a significant improver
in accuracy, relative to the isotropic factor for high-aspect-ratio meshes, and it permits ¢
convergence rates with a multigrid method.

Using the TVD concept, an alternative for the switch of (2.8) that is TVD for a sca
equation is introduced in [22]. In one dimension this switch is given by

b= IPj+1 — 2pj + Pj-1l
L P — Pyl 1P — pjal +e€

(2.12)
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and choose @ = % In practice we usually use a weaker form than (2.12), for example,

Lo — 1Pi+1 = 2p; + Py

_ , 213
I = A= w)Pro+ P (2.13)

where

Prvo = |Pj+1 — Pjl +1Pj — Pj-1ls
P = pj+1+2pj + pj-1,

and O<w < 1. The TVD switch of (2.12) is recovered whernk 1. Typicallyw ~ 1/2. In
[23] this switch allowed the computation of flows with strong shock waves, whereas
switch of (2.8) did not.

2.2. Matrix-Valued Dissipation Model (MATD)

Sharp resolution of shock waves without oscillations can be achieved by closely imita
an upwind scheme in the neighborhood of a shock wave. A key feature of upwind schemnr
a matrix evaluation of the numerical dissipation. With this evaluation the dissipative te
of each discrete equation are scaled by the appropriate eigenvalues of the flux Jac
matrix, rather than by the spectral radius, as in the JST scheme. A matrix dissipation m
can easily be constructed by starting with the JST formulation.

One can show [22] that the necessary modification of the JST scheme to produce &
trix dissipation model is the substitution 4| for the eigenvalue scaling factarin (2.5)
and (2.6). Since the Euler equations are a strongly hyperbolic system, the coefficient
trix can be diagonalized. Assun@AQ 1 = A (diagonal matrix). ThenA| is defined as
|Al=Q1|A|Q and|A| =diag(|r1], |A2], |Aa]), whereA; are the forward acoustic, back-
ward acoustic, and convective eigenvalues. An efficient way of compiirtgmes a vector
is presented in [22].

In practice one cannot chooge, A, A3 as the eigenvalues. Near stagnation poinits
approaches zero while near sonic lingr A, approaches zero. A zero artificial viscosity
would create numerical difficulties. Hence, we limit these values as

il = g max(hal, Vap(A),  [ral = ¢ max(|izl, Vap(A)), (2.14)
lhal = ¢ max(|As|, Vep(A)), (2.15)

whereg is defined by (2.11)p (A) is the spectral radius of A, and the linear eigenvalgle
can be limited differently than the nonlinear eigenvalues. The paranétensdV, have
been determined numerically. Typical values ¥se= 0.25 andV, = 0.025.

2.3. CUSP Scheme

In the previous sections we have described the use of an artificial viscosity based on e
a scalar or matrix coefficient. Inspired by earlier work on flux-vector splitting [34] Liou ar
co-workers designed a scheme called advection upstream splitting method (AUSM) [1C
35]. This method was later refined for large-scale 3D viscous computations in [17]. AUSI
based on a splitting of the flux function into convective and pressure contributions. In s
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sense, the pressure terms contribute to the acoustic waves while the velocity terms cont
to convective waves. Hence, it is reasonable that these flux terms be treated differe
Liou thus considers decompositions of the flux vector that are not based on a characte
decomposition but on Mach number scaled contributions of the left and the right states t
interface flux. This decomposition has the disadvantage that it is more difficult to deve
for other sets of equations, compared with a characteristic decomposition. A similar
scheme called the convective upwind split pressure (CUSP) scheme was later introduc
Jameson [5] and subsequently modified by Tatsumi, Martinelli, and Jameson [7, 8, 27,
The CUSP scheme has some advantages over AUSM. First, one can consider the sch
another type of artificial viscosity, since itis defined as a sum of the central flux average
adissipative flux. Hence, it can be readily used with a variety of time-stepping schemes |
multistage, LU, implicit). Second, the CUSP formulation can be used in a straightforw
manner with multistage schemes which do not evaluate the artificial dissipation fluxe
every stage, in order to reduce computational work. Hence, we shall only describe the C
version of this type of scheme.

2.3.1. Definition of CUSP Scheme

Previously, we introduced the scalar and matrix-valued viscosities by considering
of the form

1
djy12 = EQj+1/2(wj+1_wj)- (2.16)

The factor% is introduced so that we get full upwinding whéh 1> =1. We note that
for the scheme to be positiv€) must be sufficiently large. For the matrix viscosity we
choseQ = | A (modified near zero eigenvalues) while for the scalar viscosity we chc
Q=0(AI.

For the CUSP scheme we instead chodses a linear combination ab and f. In one
dimension we consider two choices for the state vector:

w=(p pu pE)T

0 0
PE up

and

wh=(0 pu pH)T

0 0
f=ul pu | +| P | =uwn+ fp
oH 0

The first-order accurate CUSP scheme is defined as

1
djt1/2 = E‘)C(le_wi)‘i‘g(le— fi). (2.17)
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The factorcis included so that is dimensionless. We thus consider only scalar paramet
instead of a matrix coefficient, but we have two free parametees)d 8. The scheme
is total enthalpy preserving i, = (0 pu pH)T is chosen as the basis. This choice i
denoted HCUSP by Jameson [7]. By using the arithmetic avetﬁge}.(u,-ﬂ +uj), and
the definition

ac = vc+ Bu.

One can rearrange (2.17) to obtain

B

1 _
djt12 = EOéC(ijrl —wj) + E(fpj+1 — fp) + éw(uj-rl —uj).

Introducing the Roe matriAg, , we havefg — fi = AgL(wr — wy). This relation is exact
if AgrL is computed from weighted averages of the left and the right states. That is,

U— VPRUR + /oLUL
VPR /PL
/prHR + /AL H
H = VPR R+ /OLAL (2.18)
VPR 4/POL
P = ~/PRPL-

Then the first-order dissipation is

1
djt12 = é(ﬂARL‘i‘VCl)(wR_wL)- (2.19)

We see from this formula that is a linear function ofA. Recall that|A| is a quadratic
function of A, by the Cayley—Hamilton theorem. Hence, it is not possible to baluhy
|Al. Sincel A| is the minimum dissipation needed for a scheme to be positive [26], the CL
scheme cannot be positive.

Remark. The parameterg andv will be defined later in this section. For these pa
rameters the CUSP scheme is not positive at leadtffer 1/2. The concepts of VD and
positivity were introduced primarily for the treatment of discontinuities. Thus, itis not cle
theoretically if the loss of positivity for subsonic flow bounded away from the sonic line
important. For supersonic flow{ > 1) the CUSP scheme is positive.

Assume that the subscrijit denotes the interior point inside the shock zoRes the
state downstream of the shock, and the dtdRas subsonic (as depicted in Fig. 1). Jameso
[7] shows that the downstream point with the stRtis in equilibrium if

vC
fr— fL + m(wR —wy) =0. (2.20)

Substituting the Roe matrix for the differencefirinto (2.20) we get

(ARL‘F%l) (wr —wp) =0.

Hencewgr — w is an eigenvector of\r |, and—(vc)/(1+ B) is the corresponding eigen-
value. However, the eigenvaluesAg, are knownto b&™, A~, andu. If A is an eigenvalue
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FIG. 1. Conditions at shock wave.
of A, then using this formula forc in (2.19) we have

1
djt12 = 5[_M + B(ArRL — AD](wr — wy).

In order to have a positive diffusion whan> 0, we require that. be negative (i.e.,
—(ve)/(1+ B)=1"). Thus,

ve=—(14+p)A". (2.21)
Foru < 0 we obtain similarly
ve=(1-pB)At. (2.22)

So, we have reduced our two free parameters to one free parameter by demanding :
point shock profile. More generally, Jameson shows that one obtains a shock profile
one interior point if the following two conditions hold:

1. When the flow is supersonic through the shock then one obtains a totally upwind 1
2. The artificial dissipatio satisfies a generalized eigenvalue problem

(ArL — arAQrA)(WR —wa) =0
at the exit from the shock.

The second condition is satisfied by both the matrix viscosity and the CUSP sche
however, the scalar viscosity does not satisfy the first condition. We again note tha
positive conditionQ > |A| is satisfied by the scalar and matrix viscosities but not by tt
CUSP viscosity for all Mach numbers.

What remains to be done is to choose suitable functiongfand vc which satisfy
the above requirements. Jameson’s choicepfowhich is based upon the eigenvalue:
corresponding to the acoustic waves, is given by

+max(0, &), if0<M <1

u—Aa-
B =4 —max(0, 42, if —1<M <0 (2.23)
sgnM), if M| = 1.

The cutoffs,8 > 0 for u > 0 andg < 0 for u < 0, ensure that the pressure terms are discr
tized centrally for small Mach numbers. Shock capturing with one interior point is obtair
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by taking

ul, if =0

—1+8)Ar", f>00<M<1
Ve =
@aA-prt, fp<0,-1<M<0

0, if M| > 1.

The dissipation coefficients are to be computed from Roe-averaged quantities as in (Z
They provide full upwinding for supersonic floy,—= sgnM), v = 0. The choice ofc = |u|

for g =0 yields a continuous dissipation coefficient in the subsonic region, and it d
not smear slip lines withu| close to zero. This makes the CUSP formulation attracti
for viscous flow calculations with boundary layers. However, viscous flows are usu
discretized by using cells with large aspect ratio. It is well known that this situation requi
larger dissipation scaling in the direction of the long cell sides than givém bye redefine
the dissipation coefficients in the individual coordinate directions. Foé teection we
have

max(|u|, scr~), if B =0,
N -1+ B)r~, ifB>0,0<M <1, (2.23)
VvC: =T .
: 1- pAt, if B<0;,—1<M <0,

0, it M| =1,

wherer* andr ~ are functions of the spectral radii in t§eands directions &: and,),
and they are defined as

_ (BN e i
r= 3 , rm=maxr,l), r~ =min(r,1).
H

The dissipation coefficient in the-direction is defined correspondingly.

2.3.2 Simplified Scheme

Several modifications of the CUSP scheme have been in use so far. Based upo
wh = (p pu pH)T system the dissipation coefficients presented in [7, 28] are

{IMI, if IM| = €,

1(6+M2), if M| <e;

2 €

(2.25)

+max(0, 4+2-), if0 <M < 1,
B =< —max(0, ), if—1<M <0,
sgnM), if M| > 1.

This choice does not allow exact shock capturing because (2.21) and (2.22) are not sati
Furthermore, Roe averaging has been replaced by arithmetic averaging in [¥] axd
by u — ¢, u+ ¢, respectively. This simplification saves a few square roots in the coding
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the dissipative flux. Equation (2.25) is then

{|M|, if IM] > €,
o =

%(e—i—MTZ), if M| < e;

(2.26)
max0,2M - 1), if0<M <1,

B=< min0,2M+1), if-1<M<0,
sgnM), if M| > 1.

3. HIGHER ORDER SCHEME

Having determinedc andg, we see from (2.17) that the scheme is completely defin
in terms ofw and f,. Formula (2.17), as given, is only first-order accurate, as it deper
only ond;; 1> =wj;1 — wj, and so the complete artificial viscosity behaves like a seco
difference. The purpose of this section is to combine a first-order accurate CUSP sct
with a high-order dissipation.

Previously, we considered a combination of a low-order and high-order artificial visco:
based on the scalat$T) switch of (2.8). This switch has the disadvantage that one quant
the pressure, controls the shock sensor. Moreover, it forces all variables to be treated ¢
even though some experience sharp changes through the discontinuity while other
continuous across the shock. The requirement to choose a particular flow variable
switch can be eliminated. One can instead limit independently each dependent var
in each coordinate direction. Such a limiting allows the construction of a strictly upwi
scheme for the one-dimensional Euler equations rather than just for a scalar equation

In [5] Jameson constructed a family of limiter functions based on the function

u—v |9

Ru,v)=1— | ———
ul + v +€

(3.1)

whereq is a positive number and has the dimensions af. The parametet « 1, and
in this work it is taken to be 10°. Note thatR(u, v) ~0 whenevemu and v have the
opposite sign. Letv be an element of the solution vector for the governing flow equ
tions. Also, note that according to our previous theory [RRNw; 3/, Awj_1/2), Where
Awijizp=wj42 — wj41, Would be replaced by 1/, wherevj 1, is the maximum ob;
over the nearest neighbors ané given by (2.12).

In the results section of this paper we will demonstrate that it can be beneficial to fur
control the regions where the limiter is applied. Hence, we generalize (3.1) to

q

. u—vu
Ru,v) =1—min(e,, ep, 1) | ————— 3.2
u,v) (&, €p, 1) T (3.2)
with
0, ifM < Miimit,
€ = .
BMjrs (M — Miimit), it M > Miimic;

0, if v < Vimit,
ep =

71 .
2Vimic @V = Vimit), i v > Vjimit.



528 SWANSON, RADESPIEL, AND TURKEL

The control parameters are the contravariant Mach number M and the pressurevswit
as given in (2.13). Thus, the limiter cannot produce a first-order scheme in regions w
M < Miimit OF v < viimit. With the introduction of mirte,, ep, 1) in (3.2) the scheme is not
very sensitive to the value of the expongritypically,q=1 orq=2).

Define the limiter functiorL (u, v) by

u+v

5
At the mesh cell interfacg + 1/2, we define the left and right states for each depende
variable as

L(u, v) = R(u, v)

(3.3)

1
wL =wj + EL(Ast/Z’ Awj_1/2),
(3.4)

1
WR = Wj41 — EL(AWHS/z, Awij_1/2),
and so
wRr — wL = Awji12 — L(Awj43/2, Awj_1/2). (3.5)

For the artificial viscosity all differences will be basedwp — w, . In the neighborhood of
shock waveR(u, v) and, hencel, (u, v) are close to zero. Moreoverg — wi = Awj1/2,
resulting in a first-order scheme for the artificial viscosity. For smooth fRiw, v) =1,
andL (u, v) = (u+ v)/2. Hence, in a smooth region

wr — wL = Awji12 — L(Awj 372, Awj_1/2)

Awjizp + Awj_12
2

>~ Awjia2 =

1
= —EAst_l/g. (36)
Thus, in the smooth regionsg — w behaves as a third difference, while in the vicinity
of shock waves it behaves as a first difference. Consequently, (3.5) has similar prope
to the JST scheme. One can obtain the relationship between (3.5) and the JST schel
defining the diffusive fluxd;;1/» as

djs1/2 = @jr12(wr — wL), @jr12 = K PAj11/2, (3.7)

wherex @ is a parameter, andis the spectral radius of the associated flux Jacobian matr
One difference between the JST scheme and (3.5) involves the parari€tarsdx @
for the second and fourth differences, respectively. Béthand«® are free parameters
in the JST scheme. As seen from (3.6) and (3.7) these parameters are automatically ¢
ask® and 3x@ with (3.5). Furthermore, for the matrix viscosity (see Section 2.2) ai
the CUSP scheme (described in Section 23)= % and so we no longer have any free
parameters. The coefficient of the second difference is chosérsasthat the scheme is
fully upwind for supersonic flows. However, the fourth-difference viscosity is introduc:
only to accelerate the convergence to a steady state by eliminating the decoupling c
odd and even points. Hence, we wist? to be as small as possible for accuracy whil
still achieving a good convergence rate. It does not seem reasonable to connect th
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components of the artificial viscosity. In Section 4 we will compare the magnitude of
scalar viscosity and the CUSP scheme.

One can generalize the limiter function of (3.3) by reintroducing a free parameter:
essentially governs the level of the third-order viscosity in the smooth regions. The resu
scheme has the disadvantage that a free parameter must be chosen; however, it t
advantages of greater flexibility and increased accuracy. We now define la asw

umuuoszJw-(l—m“Uw+MW5%1 , (3.8)
where left and right state values are determined by

1
wL = wj + EL(ijJrs/z, Awjy1/2, Awj_1/2),
1
WR = Wj4+1 — EL(AU)J'+3/2, ij+1/2, Aw]‘,]_/z).

Whenk @ = %, thelL of (3.8) reduces to the originalof (3.3). At shock waveR(u, w) ~ 0,
and we again haver — w. = Awj1/2. For smooth regions of the flow field we have
WR — WL = —2K(4)A3wj+1/2.

One difficulty with (3.1), and indeed with any TVD switch, is that it limits the difference
near minima and maxima independent of the amplitude of the function. Hence, in the
field where the solution is almost uniform the low-order scheme is activated by small n
levels. Since this occurs randomly it frequently prevents the convergence of the resi
beyond three or four orders of magnitude. The use of (3.2) eliminates this difficulty.

The extrapolation technique of (3.8) can be used with (2.17) to get the first differenc
higher order accuracy. Then, the states corresponding to higher order accuracy are ob
in a way similar to van Leer's MUSCL approach [34]. To impose monotonicity one ¢
apply the limiter discussed in this section. For example, we can replace (2.17) by

djt12 = U—ZC(wR —w) + g[ fp(wr) — fp(wp)],

wherewgr, wi are given by (3.4). This procedure was followed throughout the numeri
examples presented in Section 7. Application of (3.4) touwhe= (p pu pH)T variables

still allows total enthalpy to be preserved in the higher order scheme. When a multi
algorithm is used to solve the governing flow equations, the higher order scheme is ap
only on the finest mesh, and the lower order scheme is applied on the coarser meshe

4. ANALYSIS OF CUSP SCHEME

The eigenvalues # Ag + vcl (see 2.19) ar@;C, uoC, andusc. Using the simplifica-
tions of (2.26) the eigenvalues are
p1 = [MJ;

IM| if IM| < %
a+p if F<M<1,
M +1] if [M|>1;
IM| if IM] < %
pz=<a—p ifi<M=<l

M —1| if [M|>1.

H2
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We note that fofM| < % all three eigenvalues of the artificial viscosity are equal, and .
we have the equivalent of a scalar viscosity. The scalar viscosity now scalefMyith
rather than(|M| + 1)c as in the JST scalar viscosity. This is more similar to the case
preconditioning, where all the eigenvalues are approximabdly for low speed flow.
Hence, we expect that the CUSP dissipation should work properly for very low Me
numbers, provided the central flux terms are augmented by a suitable preconditioning m

In the subsonic range, whege=0, all of the versions of the CUSP scheme do nc
satisfy (2.21) and (2.22), which are necessary for shock capturing. Thus, the cell-face
numbers in the shock structure have to be larger than about 0.5 in order to avoid posts
oscillations. The motivation to desigrc = |u| when 8 =0 has already been discussed
However, the choice of the function f8r as given in (2.23), is not necessarily optimal. Fo
examples =max0, (u+ %A‘)/(u — 7)) would allow shock-capturing for Mach numbers
down to about 13, but the subsonic dissipation would be twice as large; 2|u| for 8 =0.
Nevertheless, our own experience, gained from a number of numerical applications, sug
that there is no need for further modificationsfof

It is rather difficult to compare the effect of the parametér of the JST and the CUSP
schemes, since these schemes also include eigenvalue information which is not the se
the two schemes. To isolate the effect we consider a low Mach number flow with prec
ditioning (see [31] for details). Now both switches are based on the convective eigenv
u. A typical value for the JST schemex¥) = 332 However, for an aspect ratio of one the
Martinelli scaling [13] adds another factor of two. The parameterO in the precondition-
ing adds an additional factor of approximately 2.6. Hence, the effective constant multiply
the fourth difference is abon%, which is somewhat smaller than tbesed with the original
CUSP scheme. For transonic flows it is more difficult to compare the levels of dissipat
However, it seems that the original CUSP scheme yields too high a viscosity level
so thex™® introduced in (3.8) should be reduced to less t%ahlumerical computations
demonstrate the improved accuracy (although slower convergence) for standard tran
turbulent flows whemr ® is reduced.

5. LOW SPEED PRECONDITIONING

For low Mach numbers standard algorithms converge to a steady state very slowly bec
of the disparity between the convective and acoustic eigenvalues. Furthermore, it is
found that most schemes give very poor results for these low Mach number flows, even v
a steady state is achieved [30—32]. One way to overcome these difficulties is to preconc
the equations by multiplying the time derivative terms by a maarix If P is appropriately
chosen, then one can reduce the disparity of the wave speeds. In this section preconditi
is applied to the different dissipation schemes. Details of preconditioning techniques
given in [31, 30].

To simplify the presentation we shall only consider a one-dimensional system. The
tension to multidimensions is straightforward. Consider the system of equations

ow . of
at  ax
We replace this by the preconditioned system

dw  of
Pl _— 4 — =
ot + aX

Ll



SOME NUMERICAL DISSIPATION SCHEMES 531

or in quasi-linear form,

Jw ow
Pl —4+A—=0,
ot + X

whereA=9f/dw. Introducing an artificial viscosity in conservation form, we get

0 Do f 1 d; —di_
_l_w L — —V[S(Z)P_lF(PA)AUJ] — j+1/2 ] 1/2’
ot 2AX  AX AX (5.1)
3 Dof P dii1p—di_ '
oW pol 7v[8<2)p*1|:(p/.\)Aw] S © b
ot 2AX AX AX

where Dy denotes a central differenc®, is a backward difference, antl is a forward
difference operator.

We first consider the matrix-valued viscosity, and tHu@A) = |PA|. The artificial
viscosity is

2 —1
i1z = 571 0P 12l (PA) /2l Wy 1 — wy),

2 _
Pidj 12 = 21/2PiPii12l (PA) 12l (wsa — w)).

When PA has only three distinct eigenvalues, then by the Cayley—Hamilton theor
IPA| =apl +a1P A+ay(P A2, where the coefficients; depend on the eigenvalues of
PA. So

PLPA| = agP ™! 4+ a1 A + apPA2.

We next consider the CUSP artificial viscosity. The artificial viscosity term is given
aoAw+a AT ~agAw+ay AAw with the appropriate coefficientds for theCUSPscheme.
This has the same form as the matrix-valued artificial viscosity without the quadratic te
and so by the identical reasoning we get

djt12 = %vcpfil/z(wnl —wj) + g(le -
(5.2)
1 -1 B

Pjdj+1/2 = SVCP Py p(wjrs —wj) + S P (fjaa — 1))
(compare with (2.17)). In theory the paramete@nd g should depend on the eigenvalues
of PA, rather thanA, and so are not the same as the nonpreconditioned version of CL
However, in order to not interfere with the shock properties of the CUSP scheme
turn off the preconditioning for M- 1/2. Hence, the relationship (2.21) is still valid. The
parametep would then be chosen by (2.23), where the eigenvaldes~ should account
for the preconditioning. In addition, fgM| < 1/2 the CUSP scheme reduces to a scal
viscosity proportional to the convective velocity which is appropriate for preconditionir
Hence, it is reasonable to use the same parametandg for the preconditioned CUSP as
given by (2.21), based on the original eigenvalues or one of the simplifications previo
discussed. The advantages of combining the CUSP scheme with preconditioning are s
in Section 7. Additional results with the preconditioned CUSP scheme are presented in
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6. SUMMARY

The central difference scheme requires an artificial viscosity in order to both pre\
oscillations near shocks and damp high frequencies, enabling the iteration procedu
reach a steady state. In the Jameson, Schmidt, Turkel (JST) formulation these arti
viscosities are provided by second and fourth differences of the variables with a sc
coefficient included. This scalar coefficient depends on the largest eigenvalue (in
direction) to scale the size of the viscosity. In addition, the coefficient depends on
second difference of the pressure to sense shocks. In the neighborhood of shocks the
difference is turned off while the second difference prevents overshoots. In smooth reg
of the flow the second difference (which leads to first-order accuracy) is minimal while
fourth difference damps the high-frequency errors.

This technique works quite well for transonic flow and was the main approach for m:
years. With the increasing popularity of upwind schemes it was seen that this scher
less accurate than upwind schemes, especially on coarse meshes (see, e.g., [1]). T
to the introduction of a matrix-valued coefficient in the artificial viscosity (dissipation) th
mimics the effects of an upwind scheme, but within the context of a central differel
scheme with an artificial dissipation, coupled with a multistage time advancement. L
Jameson introduced the CUSP scheme, which is in between the matrix dissipation ar
scalar dissipation schemes. With tbeSPscheme the dissipation is a function of the Macl
number and becomes fully upwind in supersonic regions similar to the matrix dissipat
However, it avoids the need for a full-matrix coefficient while still obtaining one-point sho
profiles. The CUSP scheme is more expensive than the matrix—viscosity method, sir
uses extrapolation for each flow variable and limiting, depending on the variable, to ach
second-order accuracy,

The idea of using the Mach number to mimic fully upwind methods has been usefu
other applications besides the artificial viscosity. One can use the Mach number to a
the parameters of the residual smoothing so that it becomes fully upwind in supers
regions. Similarly, one can construct a multigrid method with weighting factors depend
on the Mach number such that it becomes fully upwind in supersonic regions. We label

6.1. Poor Man’s Upwinding

Advantages

e Cheap
e Fully upwind in supersonic flow.

Disadvantage

e Not fully upwind for subsonic flow.

Applications

¢ Residual smoothing
e CUSP scheme
e Multigrid.

In the opposite direction the Mach number can be used to construct a preconditio
that is useful in low Mach number regions. Then the Mach number can be used to turi
the preconditioning in supersonic regions.
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FIG. 2. Inviscid pressure distributions computed with (2) MATD scheme and (b) HCUSP scheme (NA
0012 airfoil, M =0.80, o = 1.25°).

7. NUMERICAL RESULTS

In the numerical applications presented here we assess the accuracy and shock cay
capabilities of the CUSP scheme. Since the version of the CUSP scheme that we cor
is expressed in terms of the total enthaldyand is H-preserving for inviscid flows, it
is usually called the HCUSP scheme. Comparisons are made between the HCUSH
MATD schemes. The commonly used scalar dissipation scheme is also included in <
of the comparisons. In so doing one can clearly see the superiority of the high-resolt
HCUSP and MATD schemes on even relatively coarse meshes (i.e., 16 cells in the bour
layer of a viscous flow). The flow problems considered in the evaluation of these nume
diffusion schemes include the following: (1) inviscid flow over airfoils; (2) laminar floy
over a flat plate; (3) turbulent flow over an airfoil; (4) inviscid and viscous hypersonic flc
over a 2D wedge. The computational effort and convergence behavior in computing t
solutions are given. In all cases a five-stage Runge—Kutta scheme, in conjunction witl
convergence acceleration techniques of local time stepping, implicit residual smoot
and multigrid were used.

The first case is similar to the application published in [7]. Results obtained with
MATD and HCUSP schemes for inviscid transonic flow over the NACA 0012 airfoil a
compared in Figs. 2 and 3. The free-stream Mach number for this case is 0.8 and the .
of attack is 125°. Solutions were computed on three successively finer C-topology mesi|
The coarsest mesh contained 2032 cells, with 160 cells on the airfoil, and for eact

'
-0.6 Pt toE 0.6 oI
N : o\ Lower Surface Shock - ° Lower Surface Shock
O : x B : o
-0.5 ; . ST 205 F b e
04 - 192x32 \\/‘S\\K‘\‘ 0.4 Te2xez
o 384x64 o 384x64
——768x 128 ——768x128
1 1 1 1 1 Il
0.25 0.30 0.35 0.40 0.45 0.25 0.30 0.35 0.40 0.45
X/C X/C

FIG. 3. (a) MATD solutions and (b) HCUSP solutions near lower surface shock (NACA 0012 airfo
M =0.80,« =1.25").
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TABLE |
Lift and Drag Coefficients for Inviscid Flow over NACA 0012 Airfoil

Dissipation
scheme Grid C. Cop
MATD 192 x 32 0.3521 0.02249
384x 64 0.3550 0.02256
768x 128 0.3552 0.02256
HCUSP 192« 32 0.3667 0.02419
384 x 64 0.3610 0.02310
768x 128 0.3582 0.02278
HCUSP 192« 32 0.3639 0.02297
(modified) 384x 64 0.3592 0.02279
768x 128 0.3563 0.02269

Note.M,, =0.80; o =1.25".

sequential mesh the number of cells in each coordinate direction was doubled. The p
pal differences between the solutions occur at the shock waves. Since the MATD sct
uses a pressure switch for all the flow equations, it cannot capture a shock with a si
interior point. It requires three interior points. Nevertheless, the resolution of the stror
upper surface shock is nearly the same for both the MATD and HCUSP schemes ot
384 x 64 and 768x 128 meshes. With the MATD formulation there is some smearing ¢
the 192x 32 mesh. As is clearly evident in Fig. 3 the HCUSP scheme allows a sharp d
nition of the weak lower surface shock and the Zierep singularity that immediately folloy
The aerodynamic coefficients calculated with the MATD, original HCUSP (with limiter
(3.1)), and modified HCUSP (with limiter of (3.2)) schemes are presented in Table I.
coefficients computed with the MATD scheme on the 384 mesh essentially agree with
those for the finest grid. The lift coefficients determined with the original and modifi
HCUSP schemes on the corresponding meshes are slightly higher, with the finest gric
ues approaching those obtained with the MATD scheme. Drag coefficients obtained
the modified HCUSP scheme are in closer agreement with those obtained with the M.
scheme, especially on the coarsest grid. Later, in the discussion viscous airfoil flow re
we will show the behavior of the two forms of the limiter in the flow field.

As an initial evaluation of the dissipation schemes for viscous flows we consider Ic
speed(M,, =0.15) flow over a flat plate at zero incidence. For this flow the Reynolc
number per unit length is 20The computational domain is a rectangle. With respect
the leading edge of the plate, the domain extends two plate lengths upstream and one
length downstream. The upper boundary is four plate lengths above the plate. Solu
were computed on the same domain and grids used in [28]. Starting with the finest r
coarser meshes were determined by successively eliminating every other mesh line
finest grid consists of 51 128 cells, with 384 cells on the plate. In the directionormal
to the plate the grid is spaced uniformly in the boundary-layer coordinate= y/Re./?),
wherex is the coordinate parallel to the surface, and Rethe Reynolds number based
on distance from the leading edge of the plate). Thus, there is constant resolution o
boundary layer at each location along the plate. Outside the boundary layer the gr
stretched exponentially. In order to resolve the region in the vicinity of the stagnation pc
the grid is clustered at the leading edge of the plate. At the surface of the plate no-slip
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adiabatic boundary conditions are enforced. Along the boundary upstream of the lea
edge, a symmetry condition is applied. Characteristic type boundary conditions are us
the upstream, downstream, and upper boundaries.

A comparison of the velocity profile a/L =0.82 computed with the scalar, matrix,
and HCUSP dissipation forms is displayed in Fig. 4. Even with just eight points in f
boundary laye(64 x 16 grid) the MATD and HCUSP schemes nearly replicate the Blasi
solution. As demonstrated in [1] scalar dissipation can produce serious contamination.
the scalar dissipation, more than 32 points are required in the boundary layer to obt
grid converged solution. For the MATD and HCUSP schemes the variations of the er
(relative to the Blasius solution) in the calculated skin friction, displacement thickness,
momentum thickness are shown in Figs. 5a and 5b. The standard definitions given in
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FIG. 4. Boundary-layer profiles on flat plate with #0.15 and Re= 1(°: (a) tangential and transverse velo-
city profiles, X/L =0.82, 64x 16 grid; (b) tangential and transverse velocity profileg,. X 0.82, 128 x 32 grid;
(c) tangential and transverse velocity profileg| % 0.82, 256 x 64 grid.
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35 3.5
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FIG.5. Comparison of results with (a) the MATD scheme and (b) the HCUSP scheme each with the Bla
solution (M= 0.15 and Re=10P).

are used for these boundary-layer quantities. The errors in all the boundary-layer parar
are quite similar for the high-resolution schemes. This is not surprising since both sche
have a scaling factor that vanishes as the surface is approached.

Transonic flow over the RAE 2822 airfoil is the next test case. The free-stream M
number is 0.73, the angle of attack is 2.7&8nd the Reynolds number, based on the airfo
chord, is 65 x 10P. Transition of the flow from laminar to turbulent is fixed at the 3% chor
location. The C-type grids used in the computations are as follows: (1x B&0with 128
cells on the airfoil, (2) 326 64 with 256 cells on the airfoil, and (3) 640128 with 512
cells on the airfoil. In order to determine the effect of further mesh refinement a calcula
was performed with the MATD scheme on a 128@56 grid. As in the flat-plate case,
each successively coarser grid was generated by eliminating every other mesh line in
coordinate directions of the finer mesh. The outer boundary is located 20 chords fron
airfoil. The normal spacing at the surface of the 64028 mesh is B x 10~6 chords. At
the leading and trailing edges of the airfoil the mesh is clustered, giving tangential spac
of 1.17 x 10~ and 186 x 10~2 chords, respectively. These critical mesh-defining spacin
are roughly doubled with each mesh coarsening.

In Fig. 6 the pressuréCp) and surface skin-frictioiC¢) distributions computed with
the different dissipation schemes for the 2682 mesh described are shown, along with th
experimental data of [2]. As in the inviscid cases the primary differences in the solutions
cur at the shock wave. Both the scalar dissipation (SCALAR) and HCUSP schemes pro
a solution with the shock too far upstream. This is an unexpected result for the HCL

-15 . : 0.008

L 160 x 32 grid 0007E 4} T . Experiment
-1.0 \
0.006 1
-05F _0.005 - 1
a 3
o 0.004
0.0 .
0.003 - {Hf
o5f 0.002 -
0.001 P ot
10F 160 x 32 grid A .
: 0.000 : 2 \w/ S
1501 L 1 L 0. i
0.0 0.2 04 0.6 0.8 1.0 000150 0.2 04 06 0.8 10
XC X/C

FIG. 6. Comparison of (a) pressure distributions and (b) skin-friction distributions each SCALAR, MAT
and HCUSP schemes on 1&®2 grid (RAE 2822 airfoil, M=0.73, « =2.79°, Re= 6.5 x 10).
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a b

FIG. 7. Contours of functiorR(u, v) in limiter used with HCUSP scheme; (a) basic limiter and (b) modifiet
limiter that depends on the contravariant Mach number and pressure switch (RAE 2822 airfoil gr@250

scheme. The acceleration of the flow upstream of the shock is underpredicted, relative 1
finest grid. In [24] the adverse effect of a smooth limiter on the accuracy of the solution in
vicinity of flow transition and, thus, on the acceleration of the flow upstream of the shocl
demonstrated. Therefore, such a result with the HCUSP scheme could be a conseque
the smooth limiter being used. Thus, we examined the behavior of the limiter in the flow fi

The action of the limiter is revealed by the contour plot of Fig. 7 for the minimum of tl
limiter function R(u, v) (see (3.2)) taken over all four flow variables. The contours indica
that the basic limiter produces a first-order scheme over significant portions of the 1
field. This result suggests that the inaccuracy on the coarse grid with the HCUSP sct
is not simply a consequence of the behavior of the limiter in the transition region. Figu
also shows contours of the modified functi®du, v) which uses both the contravariant
Mach number and the pressure switch of (2.13). With this function the low-order sche
occurs only at shock waves. Coarse grid results obtained with the basic and modified lir
functions are displayed in Fig. 8. The shock locations computed with the modified HCL
scheme and the MATD scheme are nearly the same.

In Figs. 9 and 10 the solutions computed on the finer grids with the modified HCU
scheme are compared with the other dissipation schemes. The pressure and skin-frictic
tributions obtained with the MATD and modified HCUSP schemes exhibit little differen
on each mesh. The SCALAR scheme begins to show fairly close agreement with tl
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FIG. 8. Effect of modifications (pressure switch and reduced background dissipatiBisPscheme on
(a) pressure and (b) skin friction (16032 grid, RAE 2822 airfoil, M= 0.73, « = 2.79°, Re= 6.5 x 1(f).
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FIG. 9. Comparison of (a) pressure distributions and (b) skin-friction distributions each with SCALA
MATD, and HCUSP schemes on 32064 grid (RAE 2822 airfoil, M=0.73, « =2.79°, Re=6.5 x 1(P).

from the other schemes only on the 64028 grid. With both the SCALAR and the MATD
schemes a nonphysical increase in the skin-friction solution on the upper surface appe
the trailing edge of the airfoil. This nonphysical increase is caused primarily by the asp
ratio function of (2.11). As evident in Fig. 11, this behavior does not occur in the solut
obtained with theHCUSPscheme. The computed aerodynamic coefficients, including t
pressure and friction contributions to the total drag, are given in Table 1. On each mest
lift and drag coefficients corresponding to the solution obtained with the MATD sche
exhibit the closest agreement with the 128056 grid values. There are only small dis-
crepancies in the coefficients associated with the MATD and the modified HCUSP sche
on the 320« 64 grid (see also Fig. 12).

Convergence behavior for the HCUSP and MATD schemes is similar. For each sch
five levels of multigrid were used and either 50 or 100 cycles were executed on two coze
meshes in order to obtain an initial solution. On the 3284 grid the average rate of
reduction of the residual with both schemes is about 0.92 for 100 cycles on the finest i
Figure 13 shows the effect of modifying the limiter according to (3.8) and (3.2) on t
convergence with the HCUSP scheme. It also indicates the effect of the modification g
by (2.24) tovc in the HCUSP scheme. The convergence is improved by using the
formulation for the dissipation coefficient. Convergence stall can occur with the origina
limiter. With the modified limiter and the pressure switch this stall is prevented. Note t
convergence witly = 0 was possible for this transonic case but not for the hypersonic ¢
presented below.
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FIG. 10. Comparison of (a) pressure distributions and (b) skin-friction distributions each with SCALA
MATD, and HCUSP schemes on 640128 grid (RAE 2822 airfoil, M= 0.73, o = 2.79°, Re=6.5 x 10°).
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TABLE Il
Lift and Drag Coefficients for Turbulent Flow over RAE 2822 Airfoll

539

Dissipation scheme Grid C. Cp Cop Cot
SCALAR 160x 32 0.8172 0.01728 0.01275 0.004532
320x 64 0.8331 0.01743 0.01194 0.005487
640x 128 0.8532 0.01782 0.01225 0.005574
MATD 160 x 32 0.8304 0.01818 0.01251 0.005662
320x 64 0.8538 0.01808 0.01250 0.005571
640x 128 0.8597 0.01799 0.01246 0.005535
1280x 256 0.8611 0.01800 0.01246 0.005544
HCUSP 160x 32 0.7987 0.01926 0.01367 0.005594
320x 64 0.8493 0.01831 0.01263 0.005679
640x 128 0.8592 0.01803 0.01245 0.005585
HCUSP 160x 32 0.8271 0.01760 0.01190 0.005701
(modified) 320x 64 0.8565 0.01801 0.01234 0.005673
640x 128 0.8604 0.01798 0.01240 0.005581
Note.M,, =0.73, « =2.79; Re. = 6.5 x 1(F.
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FIG. 11. Behavior of skin-friction at airfoil trailing edge with SCALAR, MATD, and HCUSP schemes ol
320x 64 grid (RAE 2822 airfoil, M= 0.73, o = 2.79°, Re= 6.5 x 1(F).

087 0.0195 .
p———
0.86 — & HCUSP -
0.85 %& 0.0190H__ o Hcusp (mod.)/
(=]
0.84
o 00185
(&)
0.83 \\3 D_éh———___’_”__n
082 : 0.0180 ,
: : S
0.81 F{—o—MATD T
—~—HCUSP 0.0175 :
080F|—s—HcusP (mod) s , : 5
1 1 1
0.00 0.0 0.10 0.15 .20 0.00 0.05 0.0 0.15 0.20
(1/N)x10° (1/MN)x10°

FIG. 12. Variation of (a) lift and (b) drag coefficients with reciprocal of number of points (RAE 2822 airfoi

M=0.73 a =279, Re=6.5 x 10°).



540 SWANSON, RADESPIEL, AND TURKEL

original limiter 3
K9 =1/8 ol
320x64 grid

modified limiter
K% =1/8
320x64 grid

Log(residual)
A
T
Log(residual)
A
T

6 —38=007,(=05 gL ——8=0.07,(=05
----8=0.01,¢=0 ----8=0.01,=0
-8 | | | | ) -8 L L | I |
0 100 200 300 400 50 0 100 200 300 400 500
Multigrid Cycles Multigrid Cycles

FIG. 13. Effect of limiter and modified.c on convergence history of HCUSP scheme (RAE 2822 airfoll
M, =0.73 o =2.79, Re. = 6.5 x 1(F): (a) original limiter; (b) modified limiter.

The fourth case is the hypersonic 2D flow over a blunt wedge. Figure 14 displays
second-order accurate solutions obtained for viscous and inviscid flow by using iden
meshes of 64 48 cells. Physical diffusion is so large that the shock profile is significant
smeared in the viscous result. For inviscid flow, on the other hand, we obtain perfect
turing with a single interior point in the shock structure by using the formulation of (2.2
and (2.24). Detailed comparisons of the hypersonic wedge flow solutions yielded by
CUSP scheme and AUSM have been presented in [16]. It was found that the shock capt
capabilities of both schemes are essentially equal. A comparison of shock profiles fo
exact and the simplified coefficients is given in Fig. 15. Here, we have chosen the first-c
scheme in order to address the pure shock-capturing capability of the CUSP scheme wi
interference from the limiter. The simplified dissipation coefficients of (2.26) produce strc
oscillations at the shock, even though there is substantial physical diffusion present. He
it is concluded that an accurate implementation of dissipation coefficients is a requirer
for hypersonic flows with strong shocks.

Some applications of the MATD scheme to hypersonic flow problems are given in [
However, we find that matrix dissipation, combined with a pressure-based sensor in ¢
to switch from second to fourth differences, has not yet resulted in sufficient robustnes

2
%\o blunted wedge
=3 M_=10, a=0°
@ o2 T,/T.=5, Re,=10000
0]
= -4
o3 o [ 0rid 64x48

grid 64x48

@

_ | ! I L ]
0 100 200 300 400 500
multigrid cycles

AM=0.5
inviscid flow

AM=0.5
viscous flow

FIG. 14. Viscous and inviscid hypersonic flow over 2D wedge (second-order result).
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M_=9, =0
T,/T.=5, Re,=10000
first order scheme

0.5
2 0.0

0.0 HCUSP
-0.5 appr. dissip. 1-0.5
-1.0 -1.0
-1.5
26°°

FIG. 15. Influence of HCUSP dissipation coefficients on hypersonic flow over 2D wedge.

deal with hypersonic flow phenomenain general. In particular, it seems that the user-de
coefficients in (2.13)—(2.15) need adjustment, depending on the flow problem. Morec
it is well known that matrix dissipation schemes suffer from an instability known as t
carbuncle problem [15], and they need rather large valu&4 ahdV, in order to restore
stability.

The final set of results show the behavior of the HCUSP scheme with precondition
Inviscid solutions for flow over a NACA 0012 airfoil were computed on a C-type grid wi
224 x 40 cells and clustering at the leading and trailing edges. In Fig. 16 Mach num
contours delineate the effect of the free-stream Mach number on the solutions obtainec

AM=0.0005

W

e
MR
St

I
il
i

W\
N

N

grid 224x40 M_=0.01,0=0°

AM=0.05 AM=0.

M_=0.8 a=0° M_=1.5 0:=0°

FIG. 16. Influence of free-stream Mach number on the inviscid flow around NACA 0012 airfoil with tF
preconditioned HCUSP scheme.
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-120F
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M =0.05. g=0° Multigrid cycles

Ac,=0.05

preconditioned , no preconditioning

FIG. 17. Influence of preconditioning on the HCUSP scheme.

the preconditioned HCUSP scheme. Figure 17 clearly illustrates the benefits of precc
tioning on the HCUSP scheme. There is a substantial improvement in not only the qu:
of the solution but also the convergence behavior with the scheme.

Comparisons of computation times indicate that the HCUSP scheme needs about
more computer time than the basic scalar dissipation of Section 2.1. The MATD schi
only requires about 15% additional time. This reduction is primarily a consequence of
single evaluation of the limiter function. Due to lower inherent dissipation, computatic
with the HCUSP formulation converge somewhat slower for transonic flows than th
with simple scalar dissipation. The major advantage of the HCUSP approach is that
more accurate and more robust than scalar viscosity. Our numerical tests indicate th:
accuracy of the CUSP scheme is close to that of matrix dissipation for transonic flc
provided the first-order scheme is activated at shock waves only. For hypersonic flo
seems to be more robust than the matrix viscosity, even though it is not positive. S
the HCUSP scheme is implemented through artificial dissipative terms, it does not ha
be applied at each stage of the Runge—Kutta method. In particular, the diffusive fluxes
be evaluated only at the first, third, and fifth stages of a five-stage method, as is typic
done for the scalar dissipation.

8. CONCLUDING REMARKS

The CUSP scheme has been studied and analyzed. A detail comparison has been
between the CUSP, MATD, and scalar dissipation schemes. For transonic inviscid fl
the CUSP scheme allows better resolution of shock waves, since they are captured wit
interior point. However, the aerodynamic quantities such as lift and drag obtained with
original CUSP scheme are not as accurate on coarser meshes (i.e.632@lls or less) as
those calculated with the MATD scheme. Both the CUSP and MATD formulations can ¢
high accuracy in the computation of viscous flows. In the case of high Re number flow
a flat plate, each of these schemes required only eight points in the boundary layer to
errors in computed skin-friction, displacement thickness, and momentum thickness th:
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not exceed 3%. Four times as many points are necessary to obtain comparable acc
with the scalar scheme. For transonic viscous flows and coarser meshes the accur:
aerodynamic coefficients is somewhat better with the MATD scheme than with the orig
CUSP scheme. This loss in accuracy with the CUSP scheme on coarser grids appear:
a consequence of the limiter producing a first-order scheme over significant portions o
flow field and higher levels of background dissipation.

Modifications to the CUSP scheme for improving the coarse-grid accuracy have t
presented. These changes restrict the activation regions of the first-order scheme f
neighborhoods of shock waves according to (3.2) and reduce background dissipation |
the limiter of (3.8). They allow the CUSP scheme to give comparable accuracy to
obtained with the MATD scheme on coarse meshes. With these modifications to the C
scheme, convergence stall has been removed. Convergence has been further impro
introducing the aspect-ratio scaling factor of (2.24).

In comparison to the scalar scheme the CUSP scheme requires roughly 25% more
puter time while the MATD scheme needs about 15% more time. In general, converg
behavior with the CUSP and MATD schemes is similar.

With our present choice of HCUSP dissipation coefficients it has been shown that
resolution of strong shock waves occurring in hypersonic flows is possible, whereas
simplified coefficients that were published previously failed. At this point the HCU:!
scheme appears to be a better choice than the present MATD scheme for hypersoni
problems.
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